Hydration properties of synthetic high-charge micas saturated with different cations: An experimental approach

American Mineralogist (Impact Factor: 2.06). 02/2013; 98:394-400. DOI: 10.2138/am.2013.4217

ABSTRACT An understanding of the interaction mechanisms between exchangeable cations and layered silicates is of interest from both a basic and an applied point of view. Among 2:1 phyllosilicates, a new family of swelling high-charge synthetic micas has been shown to be potentially useful as decontaminant. However, the location of the interlayer cations, their acidity and the water structure in the interlayer space of these silicates are still unknown. The aim of this paper was therefore to study the hydration state of the interlayer cations in the interlayer space of high-charge expandable micas and to evaluate the effect that this hydration has on the swelling and acidity behavior of these new materials. To achieve these objectives, three synthetic micas with different charge density total layer charges (ranging between 2 and 4 per unit cell) and with five interlayer cations (Na+, Li+, K+, Mg2+, and Al3+) were synthesized and their hydration state, interlayer space, and acidity analyzed by DTA/TG, XRD, and 1H MAS NMR spectroscopy. The results showed that the hydration state depends on both the layer charge and the nature of the interlayer cation. A high participation of the inner-sphere complexes in the highly charged confined space has been inferred and proposed to induce Brønsted acidity in the solid.
Keywords: Swelling, synthetic micas, Brønsted acidity, hydration, inner sphere, DTA, XRD, NMR

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In underground repository concepts for radioactive waste, bentonite is studied as a reference swelling material to be used as an engineered barrier. Under the changing geochemical conditions prevailing within the barrier (saturation with the fluid coming from the host formation, diffusion of various chemical plumes caused by the degradation of some constituents of the barrier-system, etc.), the surface chemistry of the clay particles could evolve. This work aims to characterize the effects of these changes on (i) the microstructure of compacted bentonite samples and (ii) the diffusion properties of HTO and Na in these samples. For this purpose, bentonite sets were equilibrated with different solutions: NaCl, CaCl2, CsCl solutions as well as an artificial clayey porewater solution. The microstructure of the different samples was characterized by HRTEM and XRD, in a water saturated state. In parallel, effective diffusion coefficients of both HTO and 22Na were measured for the different samples. The density of the bentonite in the diffusion tests and in the HRTEM observations was set at 1.6 Mg m−3. From the microstructural observations and the results of diffusion tests, it is deduced that one key parameter is the occurrence of a gel phase in the material, which is found to depend strongly on the bentonite set: the gel phase dominates in Na-bentonite, while it is lacking in Cs-bentonite. The HTO diffusion coefficients are found to be lower in the samples with high gel phase content. Sodium diffusion does not follow the same trend: when compared with HTO, Na diffuses faster when the gel phase content is high. The latter result could indicate that the “accelerated diffusion mechanism” of cations, already mentioned in the literature, is enhanced in clayey materials that contain a gel phase.
    Journal of Hydrology 05/2009; 370(1):9-20. · 2.69 Impact Factor
  • Nature 02/1954; · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of water with a synthetic saponite clay sample, with a layer charge of 1 per unit cell (0.165 C m(-2)), was investigated by following along water adsorption and desorption in the relative pressure range from 10(-6) to 0.99 (i) the adsorbed amount by gravimetric and near-infrared techniques, (ii) the basal distance and arrangement of water molecules in the interlayer by X-ray and neutron diffraction under controlled water pressure, and (iii) the molecular structure and interaction of adsorbed water molecules by near-infrared (NIR) and Raman spectroscopy under controlled water pressure. The results thus obtained were confronted with Grand Canonical Monte Carlo (GC/MC) simulations. Using such an approach, various well-distinct hydration ranges can be distinguished. In the two first ranges, at low water relative pressure, adsorption occurs on external surfaces only, with no swelling associated. The next range corresponds to the adsorption of water molecules around the interlayer cation without removing it from its position on top of the ditrigonal cavity of the tetrahedral layer and is associated with limited swelling. In the following range, the cation is displaced toward the mid-interlayer region. The interlamellar spacing thus reached, around 12.3 A, corresponds to what is classically referred to as a "one-layer hydrate," whereas no water layer is present in the interlayer region. The next hydration range corresponds to the filling of the interlayer at nearly constant spacing. This leads to the formation of a well-organized network of interlayer water molecules with significant interactions with the clay layer. The structure thus formed leads to a complete extinction of the d001 line in D2O neutron diffraction patterns that are correctly simulated by directly using the molecular configurations derived by GC/MC. The next range (0.50 < P/P0 < 0.80) corresponds to the final swelling of the structure to reach d spacing values of 15.2 A (usually referred to the "two-layer hydrate"). It is associated with the development of a network of liquidlike water molecules more structured than in bulk water. The final hydration range at high relative pressure mainly corresponds to the filling of pores between clay particles.
    The Journal of Physical Chemistry B 01/2006; 109(49):23745-59. · 3.38 Impact Factor