Elastic Plate Deformation with Transverse Variation of Microrotation

Source: arXiv

ABSTRACT The purpose of this paper is to present a new mathematical model for the deformation of thin Cosserat elastic plates. Our approach, which is based on a generalization of the classical Reissner plate theory, takes into account the transverse variation of microrotation of the plates. The model assumes polynomial approximations over the plate thickness of asymmet-ric stress, couple stress, displacement, and microrotation, which are con-sistent with the elastic equilibrium, boundary conditions and the consti-tutive relationships. Based on the generalized Hellinger-Prange -Reissner variational principle and strain-displacement relation we obtain the com-plete theory of Cosserat plate. We also proved the solution uniqueness for the plate boundary value problem.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: Haben wir schon den ersten Band des vorliegenden Werkes mit Anerkennung besprechen können (F. d. M. 1892. 939, JFM 24.0939.04), so haben wir von dem Inhalt des zweiten Bandes mit grosser Freude Kenntnis genommen. Derselbe behandelt die so überaus delikaten Fragen bezüglich des elastischen Gleichgewichts und der Bewegung unendlich dünner Stäbe, Platten und Schalen in klarer und übersichtlicher Weise, aber doch mit jener Strenge, welche namentlich Werke technischen Charakters so häufig vermissen lassen. Nach einer wohl mustergültig zu nennenden historischen Einleitung erledigt der Verfasser zunächst das Gleichgewicht elastischer Stäbe (ursprünglich gerader und ursprünglich gekrümmter) und dann ihre Schwingungen. Später werden die elastischen Platten behandelt und endlich die dünnen Schalen. Ein recht interessantes Schlusscapitel erörtert die Stabilität des elastischen Gleichgewichts.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate weaker than usual constitutive assumptions in linear Cosserat theory still providing for existence and uniqueness and show a continuous dependence result for Cosserat couple modulus μc → 0.This result is needed when using Cosserat elasticity not as a physical model but as a numerical regularization device.Thereafter it is shown that the usually adopted material restrictions of uniform positivity for a linear Cosserat model cannot be consistent with experimental findings for continuous solids: the analytical solutions for both the torsion and the bending problem in general predict an unbounded stiffness for ever thinner samples. This unphysical behaviour can only be avoided for specific choices of parameters in the curvature energy expression. However, these choices do not satisfy the usual constitutive restrictions. We show that the possibly remaining linear elastic Cosserat problem is nevertheless well-posed but that it is impossible to determine the appearing curvature modulus independent of boundary conditions. This puts a doubt on the use of the linear elastic Cosserat model (or the geometrically exact model with μ>c > 0) for the physically consistent description of continuous solids like polycrystals in the framework of elasto-plasticity.The problem is avoided in geometrically exact Cosserat models if the Cosserat couple modulus μc is set to zero.
    ZAMM Journal of applied mathematics and mechanics: Zeitschrift für angewandte Mathematik und Mechanik 06/2006; 86(11):892 - 912. · 0.95 Impact Factor
  • Applied Mechanics Reviews 01/1985; 38(11). · 2.00 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014