Article

Lung Cancer Risks from Plutonium: An Updated Analysis of Data from the Mayak Worker Cohort.

a Radiation Epidemiology Branch, National Cancer Institute, Bethesda, Maryland.
Radiation Research (Impact Factor: 2.45). 02/2013; DOI: 10.1667/RR3054.1
Source: PubMed

ABSTRACT Workers at the Mayak nuclear facility in the Russian Federation offer a unique opportunity to evaluate health risks from exposure to inhaled plutonium. Risks of mortality from lung cancer, the most serious carcinogenic effect of plutonium, were evaluated in 14,621 Mayak workers who were hired in the period from 1948-1982, followed for at least 5 years, and either monitored for plutonium or never worked with plutonium. Over the follow-up period from 1953-2008, there were 486 deaths from lung cancer, 446 of them in men. In analyses that were adjusted for external radiation dose and smoking, the plutonium excess relative risk (ERR) per Gy declined with attained age and was higher for females than for males. The ERR per Gy for males at age 60 was 7.4 (95% CI: 5.0-11) while that for females was 24 (95% CI: 11-56). When analyses were restricted to plutonium doses <0.2 Gy, the ERR per Gy for males at age 60 were similar: 7.0 (95% CI: 2.5-13). Of the 486 lung cancer deaths, 105 (22%) were attributed to plutonium exposure and 29 (6%) to external exposure. Analyses of the 12,708 workers with information on smoking indicated that the relationship of plutonium exposure and smoking was likely sub-multiplicative (P = 0.011) and strongly indicated that it was super-additive (P < 0.001). Although extensive efforts have been made to improve plutonium dose estimates in this cohort, they are nevertheless subject to large uncertainties. Large bioassay measurement errors alone are likely to have resulted in serious underestimation of risks, whereas other sources of uncertainty may have biased results in ways that are difficult to predict. © 2013 by Radiation Research Society.

0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation effects on mortality from solid cancers other than lung, liver, and bone cancer in the Mayak worker cohort: 1948-2008. The cohort of Mayak Production Association (PA) workers in Russia offers a unique opportunity to study the effects of prolonged low dose rate external gamma exposures and exposure to plutonium in a working age population. We examined radiation effects on the risk of mortality from solid cancers excluding sites of primary plutonium deposition (lung, liver, and bone surface) among 25,757 workers who were first employed in 1948-1982. During the period 1948-2008, there were 1,825 deaths from cancers other than lung, liver and bone. Using colon dose as a representative external dose, a linear dose response model described the data well. The excess relative risk per Gray for external gamma exposure was 0.16 (95% CI: 0.07 - 0.26) when unadjusted for plutonium exposure and 0.12 (95% CI 0.03 - 0.21) when adjusted for plutonium dose and monitoring status. There was no significant effect modification by sex or attained age. Plutonium exposure was not significantly associated with the group of cancers analyzed after adjusting for monitoring status. Site-specific risks were uncertainly estimated but positive for 13 of the 15 sites evaluated with a statistically significant estimate only for esophageal cancer. Comparison with estimates based on the acute exposures in atomic bomb survivors suggests that the excess relative risk per Gray for prolonged external exposure in Mayak workers may be lower than that for acute exposure but, given the uncertainties, the possibility of equal effects cannot be dismissed.
    PLoS ONE 02/2015; 10(2):e0117784. DOI:10.1371/journal.pone.0117784 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: New data from the workers at the Mayak nuclear facility near Chelyabinsk, Russia, apparently show a linear increase in the risk of lung cancer with increasing dose. Furthermore, this increase occurs without a threshold. However, these conclusions are at variance with the results reported by other investigators. A possible cause of these inconsistencies could be the lack of application of microdosimetric considerations when discussing "dose" to the lung.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Radiation Protection Dosimetry 03/2015; DOI:10.1093/rpd/ncv018 · 0.86 Impact Factor