Article

Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

Memorial Sloan-Kettering Cancer Center, Research Engineering Laboratory, New York, New York 10065.
Journal of Biomedical Optics (Impact Factor: 2.75). 06/2013; 18(6):61227. DOI: 10.1117/1.JBO.18.6.061227
Source: PubMed

ABSTRACT Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

0 Followers
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lumpectomy, in conjunction with radiation and chemotherapy drugs, together comprise breast-conserving treatment as an alternative to total mastectomy for patients with breast tumors. The tumor is removed in surgery and sent for pathology processing to assess the margins, a process that takes at minimum several hours, and generally days. If the margins are not clear of tumor, the patient must undergo a second surgery to remove residual tumor. This re-excision rate varies by institution, but can be as high as 60%. Currently, no intraoperative microscopic technique is used routinely to examine tumor margins in breast tissue. A new technique for rapidly scanning large areas of tissue has been developed, called confocal strip scanning, which provides high resolution and seamless mosaics over large areas of intact tissue, with nuclear and cellular resolution and optical sectioning of about 2 microns. Up to 3.5 x 3.5 cm2 of tissue is imaged in 13 minutes at current stage speeds. This technique is demonstrated in freshly excised breast tissue, using a mobile confocal microscope stationed in our pathology laboratory. Twenty-five lumpectomy and mastectomy cases were used as a testing ground for reflectance and fluorescence contrast modes, resolution requirements and tissue fixturing configurations. It was concluded that fluorescent imaging provides the needed contrast to distinguish ducts and lobules from surrounding stromal tissue. Therefore the system was configured with 488 nm illumination, with acridine orange fluorescent dye for nuclear contrast, with the aim of building an image library of malignant and benign breast pathologies.
    Proceedings of SPIE - The International Society for Optical Engineering 01/2013; DOI:10.1117/12.2005464 · 0.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Fluorescence confocal mosaicing microscopy is an emerging technology for rapid imaging of nuclear and morphological detail directly in excised tissue, without the need for frozen or fixed section processing. Basal cell carcinomas (BCCs) can be detected with high sensitivity and specificity in Mohs excisions with this approach. For translation to clinical trials and towards potentially routine implementation, a new and faster approach called strip mosaicing confocal microscopy was recently developed. Objectives To perform a preliminary assessment of fluorescence strip mosaicing confocal microscopy for detecting skin cancer margins in Mohs excisions. Methods Tissue samples from 17 Mohs cases were imaged in the form of strip mosaics. Each mosaic was divided into two halves (submosaics) and graded by a Mohs surgeon and a dermatologist who were blinded to the pathology. The 34 submosaics were compared with the corresponding Mohs pathology. ResultsThe overall image quality was excellent for resolution, contrast and stitching in the 34 submosaics. Components of normal skin including the epidermis, dermis, dermal appendages and subcutaneous tissue were easily visualized. The preliminary measures of sensitivity and specificity were both 94% for detecting skin cancer margins. Conclusions The new strip mosaicing approach represents another advance in confocal microscopy for imaging of large areas of excised tissue. Strip mosaicing may enable rapid assessment of BCC margins in fresh excisions during Mohs surgery and may serve as an adjunct to frozen pathology.
    British Journal of Dermatology 05/2013; 169(4). DOI:10.1111/bjd.12444 · 4.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mohs micrographic surgery can be employed in recurrent basal cell carcinoma, although it is a time-consuming technique. Recently, ex vivo fluorescence confocal microscopy (FCM) has been employed to obtain a fast assessment of tumor margins at the bedside. In our case we successfully employed ex vivo FCM to assess the tumor margins and we treated the persistent tumor with intensity-modulated radiation therapy. Our case demonstrates that a multidisciplinary approach is very efficient in managing complex and recurrent tumors and highlights the benefits of FCM as a new technique that can be used in the surgical theater to speed up the entire procedure. © 2013 S. Karger AG, Basel.
    Dermatology 09/2013; 227(1). DOI:10.1159/000353577 · 1.69 Impact Factor
Show more