Strip mosaicing confocal microscopy for rapid imaging over large areas of excised tissue

Memorial Sloan-Kettering Cancer Center, Research Engineering Laboratory, New York, New York 10065.
Journal of Biomedical Optics (Impact Factor: 2.75). 06/2013; 18(6):61227. DOI: 10.1117/1.JBO.18.6.061227
Source: PubMed

ABSTRACT Confocal mosaicing microscopy is a developing technology platform for imaging tumor margins directly in freshly excised tissue, without the processing required for conventional pathology. Previously, mosaicing on 12-×-12 mm2 of excised skin tissue from Mohs surgery and detection of basal cell carcinoma margins was demonstrated in 9 min. Last year, we reported the feasibility of a faster approach called "strip mosaicing," which was demonstrated on a 10-×-10 mm2 of tissue in 3 min. Here we describe further advances in instrumentation, software, and speed. A mechanism was also developed to flatten tissue in order to enable consistent and repeatable acquisition of images over large areas. We demonstrate mosaicing on 10-×-10 mm2 of skin tissue with 1-μm lateral resolution in 90 s. A 2.5-×-3.5 cm2 piece of breast tissue was scanned with 0.8-μm lateral resolution in 13 min. Rapid mosaicing of confocal images on large areas of fresh tissue potentially offers a means to perform pathology at the bedside. Imaging of tumor margins with strip mosaicing confocal microscopy may serve as an adjunct to conventional (frozen or fixed) pathology for guiding surgery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete removal of cancerous tissue is a central aim of surgical oncology, but is difficult to achieve in certain cases, especially when the removal of surrounding normal tissues must be minimized. Therefore, when post-operative pathology identifies residual tumor at the surgical margins, re-excision surgeries are often necessary. An intraoperative approach for tumor-margin assessment, insensitive to nonspecific sources of molecular probe accumulation and contrast, is presented employing kinetic-modeling analysis of dual-probe staining using surface-enhanced Raman scattering nanoparticles (SERS NPs). Human glioma (U251) and epidermoid (A431) tumors were implanted subcutaneously in six athymic mice. Fresh resected tissues were stained with an equimolar mixture of epidermal growth factor receptor (EGFR)-targeted and untargeted SERS NPs. The binding potential (BP; proportional to receptor concentration) of EGFR - a cell-surface receptor associated with cancer - was estimated from kinetic modeling of targeted and untargeted NP concentrations in response to serial rinsing. EGFR BPs in healthy, U251, and A431 tissues were 0.06 ± 0.14, 1.13 ± 0.40, and 2.23 ± 0.86, respectively, which agree with flow-cytometry measurements and published reports. The ability of this approach to quantify the BP of cell-surface biomarkers in fresh tissues opens up an accurate new approach to analyze tumor margins intraoperatively.
    Scientific Reports 02/2015; 5:8582. DOI:10.1038/srep08582 · 5.08 Impact Factor
  • Journal of Biomedical Optics 06/2015; 20(6):61103. DOI:10.1117/1.JBO.20.6.061103 · 2.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p < 0.001). Grayscale confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.
    Breast Cancer Research and Treatment 11/2014; 149(1). DOI:10.1007/s10549-014-3182-5 · 4.20 Impact Factor

Full-text (4 Sources)

Available from
Sep 10, 2014