Article

Estimation of autistic children by metallomics analysis

La Belle Vie Research Laboratory, 8-4 Nihonbashi-Tomizawacho , Chuo-ku, Tokyo, Japan.
Scientific Reports (Impact Factor: 5.58). 08/2013; 3:1199. DOI: 10.1038/srep01199
Source: PubMed

ABSTRACT Clarification of the pathogenesis and treatment of autism spectrum disorders is one of the challenges today. In this study, we examine scalp hair concentrations of 26 trace elements for 1,967 children with autistic disorders (1,553 males and 414 females). Five-hundred and eighty-four (29.7%), 347 (17.6%) and 114 (5.8%) subjects was found deficient in zinc, magnesium and calcium, respectively, and 2.0% or less in the other essential metals. The incidence rate of mineral deficiency was highly observed in infants aged 0-3 year-old. In contrast, 339 (17.2%), 168 (8.5%) and 94 (4.8%) individuals was found suffering from high burden of aluminium, cadmium and lead, and 2.8% or less from mercury and arsenic burden. These findings suggest that infantile zinc- and magnesium-deficiency and/or toxic metal burdens may epigenetically play principal roles as environmental factors in autistic disorders and that metallomics approach may lead to early screening and prevention of the neurodevelopment disorders.

Download full-text

Full-text

Available from: Hiroshi Yasuda, Sep 18, 2014
0 Followers
 · 
105 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glyoxalase I (GLO1) is a homodimeric Zn(2+)-dependent isomerase involved in the detoxification of methylglyoxal and in limiting the formation of advanced glycation end-products (AGE). We previously found the rs4746 A332 (Glu111) allele of the GLO1 gene, which encodes for glyoxalase I, associated with "unaffected sibling" status in families with one or more children affected by Autism Spectrum Disorder (ASD). To identify and characterize this protective allele, we sequenced GLO1 exons and exon-intron junctions, detecting two additional SNPs (rs1049346, rs1130534) in linkage disequilibrium with rs4746. A family-based association study involving 385 simplex and 20 multiplex Italian families yielded a significant association with autism driven only by the rs4746 C332 (Ala111) allele itself (P < 0.05 and P < 0.001 under additive and dominant/recessive models, respectively). Glyoxalase enzymatic activity was significantly reduced both in leukocytes and in post-mortem temporocortical tissue (N = 38 and 13, respectively) of typically developing C332 allele carriers (P < 0.05 and <0.01), with no difference in Glo1 protein levels. Conversely, AGE amounts were significantly higher in the same C332 post-mortem brains (P = 0.001), with a strong negative correlation between glyoxalase activity and AGE levels (τ = -0.588, P < 0.01). Instead, 19 autistic brains show a dysregulation of the glyoxalase-AGE axis (τ = -0.209, P = 0.260), with significant blunting of glyoxalase activity and AGE amounts compared to controls (P < 0.05), and loss of rs4746 genotype effects. In summary, the GLO1 C332 (Ala111) allele confers autism vulnerability by reducing brain glyoxalase activity and enhancing AGE formation, but years after an autism diagnosis the glyoxalase-AGE axis appears profoundly disrupted, with loss of C332 allelic effects.
    Journal of Psychiatric Research 08/2014; 59. DOI:10.1016/j.jpsychires.2014.07.021 · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc supplementation can help maintain learning and memory function in rodents. In this study, we hypothesized that zinc supplementation could antagonize the neurotoxicity induced by aluminum in rats. Animals were fed a diet containing different doses of zinc (50, 100, 200 mg/kg) for 9 weeks, and orally administered aluminum chloride (300 mg/kg daily) from the third week for 7 consecutive weeks. Open-field behavioral test results showed that the number of rearings in the group given the 100 mg/kg zinc supplement was significantly increased compared with the group given the 50 mg/kg zinc supplement. Malondialdehyde content in the cerebrum was significantly decreased, while dopamine and 5-hydroxytryptamine levels were increased in the groups given the diet supplemented with 100 and 200 mg/kg zinc, compared with the group given the diet supplemented with 50 mg/kg zinc. The acetylcholinesterase activity in the cerebrum was significantly decreased in the group given the 100 mg/kg zinc supplement. Hematoxylin-eosin staining revealed evident pathological damage in the hippocampus of rats in the group given the diet supplemented with 50 mg/kg zinc, but the damage was attenuated in the groups given the diet supplemented with 100 and 200 mg/kg zinc. Our findings suggest that zinc is a potential neuroprotective agent against aluminum-induced neurotoxicity in rats, and the optimal dosages are 100 and 200 mg/kg.
    Neural Regeneration Research 10/2013; 8(29):2754-62. DOI:10.3969/j.issn.1673-5374.2013.29.007 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interactions between genes and the environment are now regarded as the most probable explanation for autism. In this review, we summarize the results of a metallomics study in which scalp hair concentrations of 26 trace elements were examined for 1,967 autistic children (1,553 males and 414 females aged 0-15 years-old), and discuss recent advances in our understanding of epigenetic roles of infantile mineral imbalances in the pathogenesis of autism. In the 1,967 subjects, 584 (29.7%) and 347 (17.6%) were found deficient in zinc and magnesium, respectively, and the incidence rate of zinc deficiency was estimated at 43.5% in male and 52.5% in female infantile subjects aged 0-3 years-old. In contrast, 339 (17.2%), 168 (8.5%) and 94 (4.8%) individuals were found to suffer from high burdens of aluminum, cadmium and lead, respectively, and 2.8% or less from mercury and arsenic. High toxic metal burdens were more frequently observed in the infants aged 0-3 years-old, whose incidence rates were 20.6%, 12.1%, 7.5%, 3.2% and 2.3% for aluminum, cadmium, lead, arsenic and mercury, respectively. These findings suggest that infantile zinc- and magnesium-deficiency and/or toxic metal burdens may be critical and induce epigenetic alterations in the genes and genetic regulation mechanisms of neurodevelopment in the autistic children, and demonstrate that a time factor "infantile window" is also critical for neurodevelopment and probably for therapy. Thus, early metallomics analysis may lead to early screening/estimation and treatment/prevention for the autistic neurodevelopment disorders.
    International Journal of Environmental Research and Public Health 11/2013; 10(11):6027-6043. DOI:10.3390/ijerph10116027 · 1.99 Impact Factor