Article

Anti-Obesity Effect of Lactobacillus gasseri BNR17 in High-Sucrose Diet-Induced Obese Mice.

R&D center, Bioneer Corporation, Daejeon, Republic of Korea.
PLoS ONE (Impact Factor: 3.53). 01/2013; 8(1):e54617. DOI: 10.1371/journal.pone.0054617
Source: PubMed

ABSTRACT Previously, we reported that Lactobacillus gasseri BNR17 (BNR17), a probiotic strain isolated from human breast milk, inhibited increases in body weight and adipocyte tissue weight in high-sucrose diet-fed Sprague-Dawley (SD) rats and reduced glucose levels in type 2 diabetes mice. In the current study, we conducted further experiments to extend these observations and elucidate the mechanism involved. C57BL/6J mice received a normal diet, high-sucrose diet or high-sucrose diet containing L. gasseri BNR17 (10(9) or 10(10) CFU) for 10 weeks. The administration of L. gasseri BNR17 significantly reduced the body weight and white adipose tissue weight regardless of the dose administered. In BNR17-fed groups, mRNA levels of fatty acid oxidation-related genes (ACO, CPT1, PPARα, PPARδ) were significantly higher and those of fatty acid synthesis-related genes (SREBP-1c, ACC) were lower compared to the high-sucrose-diet group. The expression of GLUT4, main glucose transporter-4, was elevated in BNR17-fed groups. L. gasseri BNR17 also reduced the levels of leptin and insulin in serum. These results suggest that the anti-obesity actions of L. gasseri BNR17 can be attributed to elevated expression of fatty acid oxidation-related genes and reduced levels of leptin. Additionally, data suggested the anti-diabetes activity of L. gasseri BNR17 may be to due elevated GLUT4 and reduced insulin levels.

0 Bookmarks
 · 
259 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic disorders, including obesity, diabetes, and cardiovascular disease, are widespread in Westernized nations. Gut microbiota composition is a contributing factor to the susceptibility of an individual to the development of these disorders; therefore, altering a person's microbiota may ameliorate disease. One potential microbiome-altering strategy is the incorporation of modified bacteria that express therapeutic factors into the gut microbiota. For example, N-acylphosphatidylethanolamines (NAPEs) are precursors to the N-acylethanolamide (NAE) family of lipids, which are synthesized in the small intestine in response to feeding and reduce food intake and obesity. Here, we demonstrated that administration of engineered NAPE-expressing E. coli Nissle 1917 bacteria in drinking water for 8 weeks reduced the levels of obesity in mice fed a high-fat diet. Mice that received modified bacteria had dramatically lower food intake, adiposity, insulin resistance, and hepatosteatosis compared with mice receiving standard water or control bacteria. The protective effects conferred by NAPE-expressing bacteria persisted for at least 4 weeks after their removal from the drinking water. Moreover, administration of NAPE-expressing bacteria to TallyHo mice, a polygenic mouse model of obesity, inhibited weight gain. Our results demonstrate that incorporation of appropriately modified bacteria into the gut microbiota has potential as an effective strategy to inhibit the development of metabolic disorders.
    Journal of Clinical Investigation 06/2014; · 13.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was conducted to investigate the antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and to develop a new starter for fermented milk. The isolates were identified using 16S rDNA sequencing and named Lactobacillus plantarum A, Leuconostoc lactis B and L. acidophilus C. The activity of these strains to inhibit the growth of food-borne human pathogens (Escherichia coli NCTC 12923, Salmonella Typhimurium NCTC 12023, Listeria monocytogenes NCTC 11994) was measured using the paper disc method. All these strains showed strong antibacterial activity against Li. monocytogenes NCTC 11994. The experiment groups were the fermented milks with these strains, and the control group was the fermented milk with the commercial starter (ABT 5). The change of pH, acidity and viable cell counts were measured during their aging time. All the experiment groups showed a significant difference in their aging times compared to the control group. However, the sensory test showed that the experiment groups can be used as useful starters for fermented milk. This result suggests that L. plantarum A, Leu. lactis B and L. acidophilus C have the potential to be developed as new starters for fermented milk.
    Korean Journal of Food Preservation. 10/2013; 20(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Experimental data in animals, but also observational studies in humans, suggest that the composition of the gut microbiota differs in obese vs. lean individuals, in patients with vs. without diabetes, or in patients presenting other diseases associated with obesity or nutritional disbalance, such as non-alcoholic fatty liver disease (NAFLD) or cardiovascular diseases. In this review, we describe how changes in the composition and/or activity of the gut microbiota by administration of nutrients with probiotic or prebiotic properties can modulate host gene expression and metabolism and thereby positively influence host adipose tissue development and related metabolic disorders.
    Advances in Nutrition 09/2014; 5(5):624S-33S. · 3.20 Impact Factor

Preview

Download
8 Downloads
Available from