The [PSI] Prion Exists as a Dynamic Cloud of Variants

University of Nevada, Reno, United States of America
PLoS Genetics (Impact Factor: 8.17). 01/2013; 9(1):e1003257. DOI: 10.1371/journal.pgen.1003257
Source: PubMed

ABSTRACT [PSI(+)] is an amyloid-based prion of Sup35p, a subunit of the translation termination factor. Prion "strains" or "variants" are amyloids with different conformations of a single protein sequence, conferring different phenotypes, but each relatively faithfully propagated. Wild Saccharomyces cerevisiae isolates have SUP35 alleles that fall into three groups, called reference, Δ19, and E9, with limited transmissibility of [PSI(+)] between cells expressing these different polymorphs. Here we show that prion transmission pattern between different Sup35 polymorphs is prion variant-dependent. Passage of one prion variant from one Sup35 polymorph to another need not change the prion variant. Surprisingly, simple mitotic growth of a [PSI(+)] strain results in a spectrum of variant transmission properties among the progeny clones. Even cells that have grown for >150 generations continue to vary in transmission properties, suggesting that simple variant segregation is insufficient to explain the results. Rather, there appears to be continuous generation of a cloud of prion variants, with one or another becoming stochastically dominant, only to be succeeded by a different mixture. We find that among the rare wild isolates containing [PSI(+)], all indistinguishably "weak" [PSI(+)], are several different variants based on their transmission efficiencies to other Sup35 alleles. Most show some limitation of transmission, indicating that the evolved wild Sup35 alleles are effective in limiting the spread of [PSI(+)]. Notably, a "strong [PSI(+)]" can have any of several different transmission efficiency patterns, showing that "strong" versus "weak" is insufficient to indicate prion variant uniformity.


Available from: David Bateman, May 12, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unusual genetic properties of the non-chromosomal genetic elements [URE3] and [PSI+] led to them being identified as prions (infectious proteins) of Ure2p and Sup35p respectively. Ure2p and Sup35p, and now several other proteins, can form amyloid, a linear ordered polymer of protein monomers, with a part of each molecule, the prion domain, forming the core of this β-sheet structure. Amyloid filaments passed to a new cell seed the conversion of the normal form of the protein into the same amyloid form. The cell's phenotype is affected, usually from the deficiency of the normal form of the protein. Solid-state NMR studies indicate that the yeast prion amyloids are in-register parallel β-sheet structures, in which each residue (e.g. Asn35) forms a row along the filament long axis. The favourable interactions possible for aligned identical hydrophilic and hydrophobic residues are believed to be the mechanism for propagation of amyloid conformation. Thus, just as DNA mediates inheritance by templating its own sequence, these proteins act as genes by templating their conformation. Distinct isolates of a given prion have different biological properties, presumably determined by differences between the amyloid structures. Many lines of evidence indicate that the Saccharomyces cerevisiae prions are pathological disease agents, although the example of the [Het-s] prion of Podospora anserina shows that a prion can have beneficial aspects.
    Essays in Biochemistry 08/2014; 56(1):193-205. DOI:10.1042/bse0560193 · 4.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The [PSI+] prion is a self-propagating amyloid of the translation termination factor, Sup35p, of Saccharomyces cerevisiae. The N-terminal 253 residues (NM) of this 685-residue protein normally function in regulating mRNA turnover but spontaneously form infectious amyloid in vitro. We converted the three Ile residues in Sup35NM to Leu and then replaced 16 single residues with Ile, one by one, and prepared Ile-1-(13)C amyloid of each mutant, seeding with amyloid formed by the reference sequence Sup35NM. Using solid-state NMR, we showed that 10 of the residues examined, including six between residues 30 and 90, showed the ∼0.5-nm distance between labels diagnostic of the in-register parallel amyloid architecture. The five scattered N domain residues with wider spacing may be in turns or loops; one is a control at the C terminus of M. All mutants, except Q56I, showed little or no [PSI+] transmission barrier from the reference sequence, suggesting that they could assume a similar amyloid architecture in vitro when seeded with filaments of reference sequence Sup35NM. Infection of yeast cells expressing the reference SUP35 gene sequence with amyloid of several mutants produced [PSI+] transfectants with similar efficiency as did reference sequence Sup35NM amyloid. Our work provides a stringent demonstration that the Sup35 prion domain has the folded in-register parallel β-sheet architecture and suggests common locations of the folds. This architecture naturally suggests a mechanism of inheritance of conformation, the central mystery of prions.
    Proceedings of the National Academy of Sciences 10/2014; 111(43). DOI:10.1073/pnas.1417974111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Microbiology and molecular biology reviews: MMBR 03/2015; 79(1):1-17. DOI:10.1128/MMBR.00041-14 · 15.26 Impact Factor