Nuclease-Resistant DNA via High-Density Packing in Polymeric Micellar Nanoparticle Coronas.

Department of Chemistry and Biochemistry and ‡Department of Psychiatry, University of California San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States.
ACS Nano (Impact Factor: 12.03). 02/2013; DOI: 10.1021/nn305030g
Source: PubMed

ABSTRACT Herein, we describe a polymeric micellar nanoparticle capable of rendering nucleic acids resistant to nuclease digestion. This approach relies on utilizing DNA as the polar headgroup of a DNA-polymer amphiphile in order to assemble well-defined, discrete nanoparticles. Dense packing of DNA in the micelle corona allows for hybridization of complementary oligonucleotides while prohibiting enzymatic degradation. We demonstrate the preparation, purification, and characterization of the nanoparticles, then describe their resistance to treatment with endo- and exonucleases including snake-venom phosphodiesterase (SVP), a common, general DNA digestion enzyme.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a novel two-step method, starting from bulk silicon wafers, to construct DNA conjugated silicon nanoparticles (SiNPs). This method first utilizes reactive high-energy ball milling (RHEBM) to obtain alkene grafted SiNPs. The alkene moieties are subsequently reacted with commercially available thiol-functionalized DNA via thiol-ene click chemistry to produce SiNP DNA conjugates wherein the DNA is attached through a covalent thioether bond. Further, to show the utility of this synthetic strategy, we illustrate how these SiNP ODN conjugates can detect cancer-associated miR-21 via a fluorescence ON strategy. Given that an array of biological molecules can be prepared with thiol termini and that SiNPs are biocompatible and biodegradable, we envision that this synthetic protocol will find utility in salient SiNP systems for potential therapeutic and diagnostic applications.
    Bioconjugate Chemistry 09/2014; · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surface-addressable nanostructures of linearly π-conjugated molecules play a crucial role in the emerging field of nanoelectronics. Herein, by using DNA as the hydrophilic segment, we demonstrate a solid-phase “click” chemistry approach for the synthesis of a series of DNA–chromophore hybrid amphiphiles and report their reversible self-assembly into surface-engineered vesicles with enhanced emission. DNA-directed surface addressability of the vesicles was demonstrated through the integration of gold nanoparticles onto the surface of the vesicles by sequence-specific DNA hybridization. This system could be converted to a supramolecular light-harvesting antenna by integrating suitable FRET acceptors onto the surface of the nanostructures. The general nature of the synthesis, surface addressability, and biocompatibility of the resulting nanostructures offer great promises for nanoelectronics, energy, and biomedical applications.
    Angewandte Chemie International Edition 06/2014; 53(32). · 11.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herein, we report the synthesis of DNA-functionalized infinite-coordination-polymer (ICP) nanoparticles as biocompatible gene-regulation agents. ICP nanoparticles were synthesized from ferric nitrate and a ditopic 3-hydroxy-4-pyridinone (HOPO) ligand bearing a pendant azide. Addition of Fe(III) to a solution of the ligand produced nanoparticles, which were colloidally unstable in the presence of salts. Conjugation of DNA to the Fe(III) -HOPO ICP particles by copper-free click chemistry afforded colloidally stable nucleic-acid nanoconstructs. The DNA-ICP particles, when cross-linked through sequence-specific hybridization, exhibited narrow, highly cooperative melting transitions consistent with dense DNA surface loading. The ability of the DNA-ICP particles to enter cells and alter protein expression was also evaluated. Our results indicate that these novel particles carry nucleic acids into mammalian cells without the need for transfection agents and are capable of efficient gene knockdown.
    Angewandte Chemie International Edition in English 11/2014; · 13.45 Impact Factor