Characteristics of in‐vitro phenotypes of glutamic acid decarboxylase 65 autoantibodies in high‐titre individuals

Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University.
Clinical & Experimental Immunology (Impact Factor: 3.04). 03/2013; 171(3):247-54. DOI: 10.1111/cei.12026
Source: PubMed


Previous studies have indicated phenotypical differences in glutamic acid decarboxylase 65 autoantibodies (GADA) found in type 1 diabetes (T1D) patients, individuals at risk of developing T1D and stiff-person syndrome (SPS) patients. In a Phase II trial using aluminium-formulated GAD(65) (GAD-alum) as an immunomodulator in T1D, several patients responded with high GADA titres after treatment, raising concerns as to whether GAD-alum could induce GADA with SPS-associated phenotypes. This study aimed to analyse GADA levels, immunoglobulin (Ig)G1-4 subclass frequencies, b78- and b96·11-defined epitope distribution and GAD(65) enzyme activity in sera from four cohorts with very high GADA titres: T1D patients (n = 7), GAD-alum-treated T1D patients (n = 9), T1D high-risk individuals (n = 6) and SPS patients (n = 12). SPS patients showed significantly higher GADA levels and inhibited the in-vitro GAD(65) enzyme activity more strongly compared to the other groups. A higher binding frequency to the b78-defined epitope was found in the SPS group compared to T1D and GAD-alum individuals, whereas no differences were detected for the b96·11-defined epitope. GADA IgG1-4 subclass levels did not differ between the groups, but SPS patients had higher IgG2 and lower IgG4 distribution more frequently. In conclusion, the in-vitro GADA phenotypes from SPS patients differed from the T1D- and high-risk groups, and GAD-alum treatment did not induce SPS-associated phenotypes. However, occasional overlap between the groups exists, and caution is indicated when drawing conclusions to health or disease status.

9 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVEGAD formulated in aluminum hydroxide (GAD-alum) has previously been shown to induce preservation of residual insulin secretion in recent-onset type 1 diabetes, but recent phase II and III GAD-alum trials failed to reach primary outcomes. The European phase III study was therefore closed after 15 months, and only a minority of patients completed the 30 months of follow-up.RESEARCH DESIGN AND METHODS This study was aimed to characterize cellular and humoral responses in the Swedish patients (n = 148) participating in the phase III trial, receiving four (4D) or two (2D) GAD-alum doses or placebo. Serum GAD65 antibody (GADA) levels, GADA IgG1-4 subclass distribution, cytokine secretion, and proliferative responses in peripheral blood mononuclear cells (PBMCs) were analyzed.RESULTSThe GAD65-induced cytokine profile tended to switch toward a predominant Th2-associated profile over time both in the 2D and 4D group. The groups also displayed increased GADA levels and PBMC proliferation compared with placebo, whereas GADA IgG subclass distribution changed in 4D patients.CONCLUSIONS Both 2D and 4D patients displayed GAD65-specifc cellular and humoral effects after GAD-alum treatment, but at different time points and magnitudes. No specific immune markers could be associated with treatment efficacy.
    Diabetes care 07/2013; 36(11). DOI:10.2337/dc12-2251 · 8.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glutamic acid decarboxylase 65 (GAD65) and autoantibodies specific for GAD65 (GADA) are associated with autoimmune diseases including Stiff Person Syndrome (SPS) and Type 1 diabetes (T1D). GADA is recognized as a biomarker of value for clinical diagnosis and prognostication in these diseases. Nonetheless, it remains medically interesting to develop sensitive and specific assays to detect GAD65 preceding GADA emergence, and to monitor GADA-GAD65 immune complexes in blood samples. In the present study, we developed a highly sensitive proximity ligation assay to measure serum GAD65. This novel assay allowed detection of as little as 0.65 pg/ml GAD65. We were also able to detect immune complexes involving GAD65 and GADA. Both free GAD65 and GAD65-GADA levels were significantly higher in serum samples from SPS patients compared to healthy controls. The proximity ligation assays applied for detection of GAD65 and its immune complexes may thus enable improved diagnosis and better understanding of SPS.
    Scientific Reports 06/2015; 5:11196. DOI:10.1038/srep11196 · 5.58 Impact Factor