A Single Cell Level Based Method for Copy Number Variation Analysis by Low Coverage Massively Parallel Sequencing

Guangdong Provincial Key Laboratory of Human Diseases Genome, BGI-Shenzhen, Guangdong, China.
PLoS ONE (Impact Factor: 3.23). 01/2013; 8(1):e54236. DOI: 10.1371/journal.pone.0054236
Source: PubMed


Copy number variations (CNVs), a common genomic mutation associated with various diseases, are important in research and clinical applications. Whole genome amplification (WGA) and massively parallel sequencing have been applied to single cell CNVs analysis, which provides new insight for the fields of biology and medicine. However, the WGA-induced bias significantly limits sensitivity and specificity for CNVs detection. Addressing these limitations, we developed a practical bioinformatic methodology for CNVs detection at the single cell level using low coverage massively parallel sequencing. This method consists of GC correction for WGA-induced bias removal, binary segmentation algorithm for locating CNVs breakpoints, and dynamic threshold determination for final signals filtering. Afterwards, we evaluated our method with seven test samples using low coverage sequencing (4∼9.5%). Four single-cell samples from peripheral blood, whose karyotypes were confirmed by whole genome sequencing analysis, were acquired. Three other test samples derived from blastocysts whose karyotypes were confirmed by SNP-array analysis were also recruited. The detection results for CNVs of larger than 1 Mb were highly consistent with confirmed results reaching 99.63% sensitivity and 97.71% specificity at base-pair level. Our study demonstrates the potential to overcome WGA-bias and to detect CNVs (>1 Mb) at the single cell level through low coverage massively parallel sequencing. It highlights the potential for CNVs research on single cells or limited DNA samples and may prove as a promising tool for research and clinical applications, such as pre-implantation genetic diagnosis/screening, fetal nucleated red blood cells research and cancer heterogeneity analysis.

Download full-text


Available from: Xuyang Yin, Jan 21, 2014
20 Reads
  • Source
    • "For example, screening cancer by analyzing Circulating Tumor Cells (CTCs) from peripheral blood [64] will enable the understanding of the mechanism of carcinogenesis in terms of transformation, lineage structure and clonal evolution [2]. Additionally, such single-cell screening will potentially allow for detection of genetic mutations or chromosome abnormalities in an embryo or fetus with a single or a few nucleated red blood cells (nRBC) enriched from the peripheral blood of the mother (non-invasive prenatal diagnosis)[65], or with a blastomere isolated from an in vitro fertilized embryo (preimplantation genetic diagnosis, or screening) [2,65-67]. There is no doubt that many technologies discussed here will be further improved and expanded allowing single-cell analysis applications to reward us with unexpected and exciting insights into the secrets of life, and with an improvement of life quality. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.
    04/2014; 3(1). DOI:10.4172/2168-9431.1000106
  • Fertility and sterility 03/2013; 99(6). DOI:10.1016/j.fertnstert.2013.02.034 · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing (NGS) is now being used for detecting chromosomal abnormalities in blastocyst trophectoderm (TE) cells from in vitro fertilized embryos. However, few data are available regarding the clinical outcome, which provides vital reference for further application of the methodology. Here, we present a clinical evaluation of NGS-based preimplantation genetic diagnosis/screening (PGD/PGS) compared with single nucleotide polymorphism (SNP) array-based PGD/PGS as a control. A total of 395 couples participated. They were carriers of either translocation or inversion mutations, or were patients with recurrent miscarriage and/or advanced maternal age. A total of 1,512 blastocysts were biopsied on D5 after fertilization, with 1,058 blastocysts set aside for SNP array testing and 454 blastocysts for NGS testing. In the NGS cycles group, the implantation, clinical pregnancy and miscarriage rates were 52.6% (60/114), 61.3% (49/80) and 14.3% (7/49), respectively. In the SNP array cycles group, the implantation, clinical pregnancy and miscarriage rates were 47.6% (139/292), 56.7% (115/203) and 14.8% (17/115), respectively. The outcome measures of both the NGS and SNP array cycles were the same with insignificant differences. There were 150 blastocysts that underwent both NGS and SNP array analysis, of which seven blastocysts were found with inconsistent signals. All other signals obtained from NGS analysis were confirmed to be accurate by validation with qPCR. The relative copy number of mitochondrial DNA (mtDNA) for each blastocyst that underwent NGS testing was evaluated, and a significant difference was found between the copy number of mtDNA for the euploid and the chromosomally abnormal blastocysts. So far, out of 42 ongoing pregnancies, 24 babies were born in NGS cycles; all of these babies are healthy and free of any developmental problems. This study provides the first evaluation of the clinical outcomes of NGS-based pre-implantation genetic diagnosis/screening, and shows the reliability of this method in a clinical and array-based laboratory setting. NGS provides an accurate approach to detect embryonic imbalanced segmental rearrangements, to avoid the potential risks of false signals from SNP array in this study.
    12/2014; 3(1):30. DOI:10.1186/2047-217X-3-30
Show more