Article

Bioprinting towards Organ Fabrication: Challenges and Future Trends.

IEEE transactions on bio-medical engineering (Impact Factor: 2.15). 01/2013; DOI: 10.1109/TBME.2013.2243912
Source: PubMed

ABSTRACT Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends towards fabricating living organs for transplant in the near future.

22 Bookmarks
 · 
1,762 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3D printing is expected to revolutionize health care through uses in tissue and organ fabrication; creation of customized prosthetics, implants, and anatomical models; and pharmaceutical research regarding drug dosage forms, delivery, and discovery.
    P & T : a peer-reviewed journal for formulary management. 10/2014; 39(10):704-11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tissue engineering has been focused on the fabrication of vascularized 3D tissue for decades. Most recently, bioprinting, especially tissue and organ printing, has shown great potential to enable automated robotic-based fabrication of 3D vascularized tissues and organs that are readily available for in vitro studies or in vivo transplantation. Studies have demonstrated the feasibility of the tissue printing process through bioprinting of scaffold-free cellular constructs that are able to undergo self-assembly for tissue formation; however, they are still limited in size and thickness due to the lack of a vascular network. Here, in this visionary paper, we present a framework concept for bioprinting 3D large-scale tissues with a perfusable vascular system in vitro to preserve cell viability and tissue maturation. With the help of a customized Multi-Arm Bioprinter (MABP), we lay out a hybrid bioprinting system to print scale-up tissues and organ models and demonstrated envision its promising application for in vitro tissue engineering and its potential for therapeutic purposes with our proof of concept study.
    Journal of Manufacturing Science and Engineering 09/2014; · 0.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the effect of bioglass (bioactive glass) on growth and mineralization of bone-related SaOS-2 cells, encapsulated into a printable and biodegradable alginate/gelatine hydrogel. The hydrogel was supplemented either with polyphosphate (polyP), administered as polyP•Ca<sup>2+</sup>-complex, or silica, or as biosilica that had been enzymatically prepared from ortho-silicate by silicatein. These hydrogels, together with SaOS-2 cells, were bioprinted to computer-designed scaffolds. The results revealed that bioglass (nano)particles, with a size of 55 nm and a molar ratio of SiO<sub>2</sub>∶CaO∶P<sub>2</sub>O<sub>5</sub> of 55∶40∶5, did not affect the growth of the encapsulated cells. If silica, biosilica, or polyP•Ca<sup>2+</sup>-complex is co-added to the cell-containing alginate/gelatin hydrogel the growth behavior of the cells is not changed. Addition of 5 mg/ml of bioglass particles to this hydrogel significantly enhanced the potency of the entrapped SaOS-2 cells to mineralize. If compared with the extent of the cells to form mineral deposits in the absence of bioglass, the cells exposed to bioglass together with 100 µmoles/L polyP•Ca<sup>2+</sup>-complex increased their mineralization activity from 2.1- to 3.9-fold, or with 50 µmoles/L silica from 1.8- to 2.9-fold, or with 50 µmoles/L biosilica from 2.7- to 4.8-fold or with the two components together (100 µmoles/L polyP•Ca<sup>2+</sup>-complex and 50 µmoles/L biosilica) from 4.1- to 6.8-fold. Element analysis by EDX spectrometry of the mineral nodules formed by SaOS-2 revealed an accumulation of O, P, Ca and C, indicating that the mineral deposits contain, besides Ca-phosphate also Ca-carbonate. The results show that bioglass added to alginate/gelatin hydrogel increases the proliferation and mineralization of bioprinted SaOS-2 cells. We conclude that the development of cell-containing scaffolds consisting of a bioprintable, solid and cell-compatible inner matrix surrounded by a printable hard and flexible outer matrix containing bioglass, provide a suitable strategy for the fabrication of morphogenetically active and biodegradable implants.
    PLoS ONE 11/2014; 9(11):e112497. · 3.53 Impact Factor

Full-text

Download
2,268 Downloads
Available from
Aug 22, 2014
Available from