Article

Bioprinting towards Organ Fabrication: Challenges and Future Trends.

IEEE transactions on bio-medical engineering (Impact Factor: 2.15). 01/2013; DOI: 10.1109/TBME.2013.2243912
Source: PubMed

ABSTRACT Tissue engineering has been a promising field of research, offering hope for bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. Organ printing, which is defined as computer-aided additive biofabrication of 3D cellular tissue constructs, has shed light on advancing this field into a new era. Organ printing takes advantage of rapid prototyping (RP) technology to print cells, biomaterials, and cell-laden biomaterials individually or in tandem, layer by layer, directly creating 3D tissue-like structures. Here, we overview RP-based bioprinting approaches and discuss the current challenges and trends towards fabricating living organs for transplant in the near future.

11 Bookmarks
 · 
781 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the progress in tissue engineering, several challenges must be addressed for organ printing to become a reality. The most critical challenge is the integration of a vascular network, which is also a problem that the majority of tissue engineering technologies are facing. An embedded microfluidic channel network is probably the most promising solution to this problem. However, the available microfluidic channel fabrication technologies either have difficulty achieving a three-dimensional complex structure or are difficult to integrate within cell printing process in tandem. In this paper, a novel printable vessel-like microfluidic channel fabrication method is introduced that enables direct bioprinting of cellular microfluidic channels in form of hollow tubes. Alginate and chitosan hydrogels were used to fabricate microfluidic channels showing the versatility of the process. Geometric characterization was performed to understand effect of biomaterial and its flow rheology on geometric properties. Microfluidic channels were printed and embedded within bulk hydrogel to test their functionality through perfusion of cell type oxygenized media. Cell viability experiments were conducted and showed great promise of the microfluidic channels for development of vascular networks.
    Journal of Nanotechnology in Engineering and Medicine. 07/2013; 4(2):021001.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper highlights the development of ‘Multi-arm Bioprinter (MABP)’ capable of concurrent multi-material deposition with independent motion path and dispensing parameters including deposition speed, material dispensing rate, and nozzle travel velocity for use in tissue engineering. In this research, the system is designed to concurrently print a filament structure and deposit cell spheroids between the filaments to create a hybrid structure to support the cell spheroids in three dimensions (3Ds). This process can be used with multiple cell types and is capable of reducing the fabrication time while using optimized dispensing parameters for each material. A novel method of dispensing the crosslinking solution using a co-axial nozzle was also developed and demonstrated in this paper. Cell-laden structures were fabricated through concurrent deposition of cell-encapsulated filaments and with cell spheroids to validate this concept. Rheology studies were then conducted to determine the effects of crosslink flow on filament width, hydrogel dispensing pressure on filament width, and dispensing time interval on spheroid diameter.
    Robotics and Computer-Integrated Manufacturing 01/2014; 30(3):295–304. · 1.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue and organ replacement is required when there are no alternative therapies available. Although vascular tissue engineering was originally developed to meet the clinical demands of small-diameter vascular conduits as bypass grafts, it has evolved into a highly advanced field where perfusable vasculatures are generated for implantation. Herein, we review several cutting-edge techniques that have led to implantable human blood vessels in clinical trials, the novel approaches that build complex perfusable microvascular networks in functional tissues, the use of stem cells to generate endothelial cells for vascularization, as well as the challenges in bringing vascular tissue engineering technologies into the clinics.
    Current opinion in chemical engineering. 02/2014; 3:68-74.

Full-text

View
2,048 Downloads
Available from
Jun 1, 2014
Available from