Article

Immunogenicity of Pluripotent Stem Cells and Their Derivatives

Stanford University School of Medicine, Lorry Lokey Stem Cell Research Bldg, 265 Campus Dr, Room G1120B, Stanford, CA 94305-5454. .
Circulation Research (Impact Factor: 11.09). 02/2013; 112(3):549-561. DOI: 10.1161/CIRCRESAHA.111.249243
Source: PubMed

ABSTRACT The ability of pluripotent stem cells to self-renew and differentiate into all somatic cell types brings great prospects to regenerative medicine and human health. However, before clinical applications, much translational research is necessary to ensure that their therapeutic progenies are functional and nontumorigenic, that they are stable and do not dedifferentiate, and that they do not elicit immune responses that could threaten their survival in vivo. For this, an in-depth understanding of their biology, genetic, and epigenetic make-up and of their antigenic repertoire is critical for predicting their immunogenicity and for developing strategies needed to assure successful long-term engraftment. Recently, the expectation that reprogrammed somatic cells would provide an autologous cell therapy for personalized medicine has been questioned. Induced pluripotent stem cells display several genetic and epigenetic abnormalities that could promote tumorigenicity and immunogenicity in vivo. Understanding the persistence and effects of these abnormalities in induced pluripotent stem cell derivatives is critical to allow clinicians to predict graft fate after transplantation, and to take requisite measures to prevent immune rejection. With clinical trials of pluripotent stem cell therapy on the horizon, the importance of understanding immunologic barriers and devising safe, effective strategies to bypass them is further underscored. This approach to overcome immunologic barriers to stem cell therapy can take advantage of the validated knowledge acquired from decades of hematopoietic stem cell transplantation.

Download full-text

Full-text

Available from: Joseph C Wu, Mar 23, 2015
0 Followers
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The unexpected discovery that somatic cells can be reprogrammed to a pluripotent state yielding induced pluripotent stem cells has made it possible to produce cardiovascular cells exhibiting inherited traits and disorders. Use of these cells in high throughput analyses should broaden our insight into fundamental disease mechanisms and provide many benefits for patients, including new therapeutics and individually tailored therapies. Here we review recent progress in generating induced pluripotent stem cell-based models of cardiovascular disease and their multiple applications in drug development.
    Circulation Research 02/2013; 112(3):534-548. DOI:10.1161/CIRCRESAHA.111.250266 · 11.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human pluripotent stem cells (PSCs) are a leading candidate for cell-based therapies because of their capacity for unlimited self renewal and pluripotent differentiation. These advances have recently culminated in the first-in-human PSC clinical trials by Geron, Advanced Cell Technology and the Kobe Center for Developmental Biology for the treatment of spinal cord injury and macular degeneration. Despite their therapeutic promise, a crucial hurdle for the clinical implementation of human PSCs is their potential to form tumors in vivo. In this Perspective, we present an overview of the mechanisms underlying the tumorigenic risk of human PSC-based therapies and discuss current advances in addressing these challenges.
    Nature medicine 08/2013; 19(8):998-1004. DOI:10.1038/nm.3267 · 28.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One aim of stem cell-based therapy is to utilize pluripotent stem cells (PSCs) as a supplementary source of cells to repair or replace tissues or organs that have ceased to function due to severe tissue damage. However, PSC-based therapy requires extensive research to ascertain if PSC derivatives are functional without the risk of tumorigenicity, and also do not engender severe immune rejection that threatens graft survival and function. Recently, the suitability of induced pluripotent stem cells applied for patient-tailored cell therapy has been questioned since the discovery of several genetic and epigenetic aberrations during the reprogramming process. Hence, it is crucial to understand the effect of these abnormalities on the immunogenicity and survival of PSC grafts. As induced PSC-based therapy represents a hallmark for the potential solution to prevent and arrest immune rejection, this review also summarizes several up-to-date key findings in the field.
    Current Stem Cell Research & Therapy 10/2013; 9(1). DOI:10.2174/1574888X113086660068 · 2.86 Impact Factor
Show more