Stem Cells' Exodus: A Journey to Immortality

Stowers Institute for Medical Research, 1000 East 50(th) Street, Kansas City, MO 64110, USA
Developmental Cell (Impact Factor: 9.71). 01/2013; 24(2):113-114. DOI: 10.1016/j.devcel.2013.01.001
Source: PubMed


Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

2 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The decline of tissue regenerative potential with the loss of stem cell function is a hallmark of mammalian aging. We study Botryllus schlosseri, a colonial chordate which exhibits robust stem cell-mediated regeneration capacities throughout life. Larvae, derived by sexual reproduction and chordate development, metamorphose to clonal founders that undergo weekly formation of new individuals by budding from stem cells. Individuals are transient structures which die through massive apoptosis, and successive buds mature to replicate an entire new body. As a result, their stem cells, which are the only self-renewing cells in a tissue, are the only cells which remain through the entire life of the genotype and retain the effects of time. During aging, a significant decrease in the colonies’ regenerative potential is observed and both sexual and asexual reproductions will eventually halt. When a parent colony is experimentally separated into a number of clonal replicates, they frequently undergo senescence simultaneously, suggesting a heritable factor that determines lifespan in these colonies. The availability of the recently published B. schlosseri genome coupled with its unique life cycle features promotes the use of this model organism for the study of the evolution of aging, stem cells, and mechanisms of regeneration.
    Invertebrate Reproduction and Development 01/2015; 59(sup1). DOI:10.1080/07924259.2014.944673 · 0.61 Impact Factor