Article

Properties of Ribbon and Non-Ribbon Release from Rod Photoreceptors Revealed by Visualizing Individual Synaptic Vesicles

Departments of Pharmacology and Experimental Neuroscience and Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 01/2013; 33(5):2071-86. DOI: 10.1523/JNEUROSCI.3426-12.2013
Source: PubMed

ABSTRACT Vesicle release from rod photoreceptors is regulated by Ca(2+) entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1-43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca(2+) influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca(2+) entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light.

1 Follower
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intracellular calcium stores control many neuronal functions such as excitability, gene expression, synaptic plasticity, and synaptic release. Although the existence of calcium stores along with calcium-induced calcium release (CICR) has been demonstrated in conventional and ribbon synapses, functional significance and the cellular mechanisms underlying this role remains unclear. This review summarizes recent experimental evidence identifying contribution of CICR to synaptic transmission and synaptic plasticity in the CNS, retina and inner ear. In addition, the potential role of CICR in the recruitment of vesicles to releasable pools in hair-cell ribbon synapses will be specifically discussed.
    Frontiers in Cellular Neuroscience 06/2014; 8:162. DOI:10.3389/fncel.2014.00162 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Release from rods is triggered by the opening of L-type Ca2+ channels that lie beneath synaptic ribbons. After exocytosis, vesicles are retrieved by compensatory endocytosis. Previous work showed that endocytosis is dynamin-dependent in rods but dynamin-independent in cones. We hypothesized that fast endocytosis in rods may also differ from cones in its dependence upon the amount of Ca2+ influx and/or endocytic load. We measured exocytosis and endocytosis from membrane capacitance (C m) changes evoked by depolarizing steps in voltage clamped rods from tiger salamander retinal slices. Similar to cones, the time constant for endocytosis in rods was quite fast, averaging <200 ms. We manipulated Ca2+ influx and the amount of vesicle release by altering the duration and voltage of depolarizing steps. Unlike cones, endocytosis kinetics in rods slowed after increasing Ca2+ channel activation with longer step durations or more strongly depolarized voltage steps. Endocytosis kinetics also slowed as Ca2+ buffering was decreased by replacing BAPTA (10 or 1 mM) with the slower Ca2+ buffer EGTA (5 or 0.5 mM) in the pipette solution. These data provide further evidence that endocytosis mechanisms differ in rods and cones and suggest that endocytosis in rods is regulated by both endocytic load and local Ca2+ levels.
    Visual Neuroscience 04/2014; 31(3):1-9. DOI:10.1017/S095252381400011X · 1.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca(2+)-induced Ca(2+) release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca(2+) indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca(2+) channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca(2+) from terminal ER by lengthy depolarization did not significantly deplete Ca(2+) from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca(2+) through ER from other parts of the cell.
    Frontiers in Cellular Neuroscience 02/2014; 8:20. DOI:10.3389/fncel.2014.00020 · 4.18 Impact Factor