Inherited variant on chromosome 11q23 increases susceptibility to IDH-mutated but not IDH-normal gliomas regardless of grade or histology

Program in Cancer Genetics, Helen Diller Family Comprehensive Cancer Center (K.M.W.), Department of Epidemiology and Biostatistics (P.B., Y.X., J.L.W.), Institute of Human Genetics (J.L.W., J.K.W., M.R.W.), and Department of Pathology, University of California, San Francisco, San Francisco, California (T.T.)
Neuro-Oncology (Impact Factor: 5.56). 01/2013; 15(5). DOI: 10.1093/neuonc/nos324
Source: PubMed


IntroductionRecent discoveries of inherited glioma risk loci and acquired IDH mutations are providing new insights into glioma etiology. IDH mutations are common in lower grade gliomas and secondary glioblastomas and uncommon in primary glioblastomas. Because the inherited variant in 11q23 has been associated with risk of lower grade glioma and not with glioblastomas, we hypothesized that this variant increases susceptibility to IDH-mutated gliomas, but not to IDH-wild-type gliomas.Methods
We tested this hypothesis in patients with glioma and controls from the San Francisco Adult Glioma Study, the Mayo Clinic, and Illumina controls (1102 total patients, 5299 total controls). Case-control additive associations of 11q23 risk alleles (rs498872, T allele) were calculated using logistic regression, stratified by tumor IDH status (mutated or wild-type) and by histology and grade. We also adjusted for the recently discovered 8q24 glioma risk locus rs55705857 G allele.ResultsThe 11q23 glioma risk locus was associated with increased risk of IDH-mutated gliomas of all histologies and grades (odds ratio [OR] = 1.50; 95% confidence interval [CI] = 1.29-1.74; P = 1.3X10(-7)) but not with IDH-wild-type gliomas of any histology or grade (OR = 0.91; 95% CI = 0.81-1.03; P = 0.14). The associations were independent of the rs55705857 G allele.ConclusionA variant at the 11q23 locus increases risk for IDH-mutated but not IDH-wild-type gliomas, regardless of grade or histology.

13 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome analyses have facilitated the discovery of clinically relevant genetic alterations in a variety of diseases, most notably cancer. A prominent example of this was the discovery of mutations in isocitrate dehydrogenases 1 and 2 (IDH1/2) in a sizeable proportion of gliomas and some other neoplasms. Herein the normal functions of these enzymes, how the mutations alter their catalytic properties, the effects of their D-2-hydroxyglutarate metabolite, technical considerations in diagnostic neuropathology, implications about prognosis and therapeutic considerations, and practical applications and controversies regarding IDH1/2 mutation testing are discussed.
    Acta Neuropathologica 03/2013; 125(5). DOI:10.1007/s00401-013-1106-9 · 10.76 Impact Factor
  • Neuro-Oncology 05/2013; 15(5):513-4. DOI:10.1093/neuonc/not061 · 5.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Genome-wide association studies have implicated single nucleotide polymorphisms (SNPs) in 7 genes as glioma risk factors, including 2 (TERT, RTEL1) involved in telomerase structure/function. We examined associations of these 7 established glioma risk loci with age at diagnosis among patients with glioma.MethodsSNP genotype data were available for 2286 Caucasian glioma patients from the University of California, San Francisco (n = 1434) and the Mayo Clinic (n = 852). Regression analyses were performed to test for associations between "number of risk alleles" and "age at diagnosis," adjusted for sex and study site and stratified by tumor grade/histology where appropriate.ResultsFour SNPs were significantly associated with age at diagnosis. Carrying a greater number of risk alleles at rs55705857 (CCDC26) and at rs498872 (PHLDB1) was associated with younger age at diagnosis (P = 1.4 × 10(-22) and P = 9.5 × 10(-7), respectively). These SNPs are stronger risk factors for oligodendroglial tumors, which tend to occur in younger patients, and their association with age at diagnosis varied across tumor subtypes. In contrast, carrying more risk alleles at rs2736100 (TERT) and at rs6010620 (RTEL1) was associated with older age at diagnosis (P = 6.2 × 10(-4) and P = 2.5 × 10(-4), respectively). These SNPs are risk factors for all glioma grades/histologies, and their association with age at diagnosis was consistent across tumor subgroups.Conclusions Carrying a greater number of risk alleles might be expected to decrease age at diagnosis. However, glioma susceptibility conferred by variation in telomerase-related genes did not follow this pattern. This supports the hypothesis that telomerase-related mechanisms of telomere maintenance are more associated with gliomas that develop later in life than those utilizing telomerase-independent mechanisms (ie, alternative lengthening of telomeres).
    Neuro-Oncology 06/2013; 15(8). DOI:10.1093/neuonc/not051 · 5.56 Impact Factor
Show more