Article

Appropriate Use Criteria for Amyloid PET: A Report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association

Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Journal of Nuclear Medicine (Impact Factor: 5.56). 01/2013; 54(3). DOI: 10.2967/jnumed.113.120618
Source: PubMed

ABSTRACT Positron emission tomography (PET) of brain amyloid β is a technology that is becoming more available, but its clinical utility in medical practice requires careful definition. To provide guidance to dementia care practitioners, patients, and caregivers, the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging convened the Amyloid Imaging Taskforce (AIT). The AIT considered a broad range of specific clinical scenarios in which amyloid PET could potentially be used appropriately. Peer-reviewed, published literature was searched to ascertain available evidence relevant to these scenarios, and the AIT developed a consensus of expert opinion. Although empirical evidence of impact on clinical outcomes is not yet available, a set of specific appropriate use criteria (AUC) were agreed on that define the types of patients and clinical circumstances in which amyloid PET could be used. Both appropriate and inappropriate uses were considered and formulated, and are reported and discussed here. Because both dementia care and amyloid PET technology are in active development, these AUC will require periodic reassessment. Future research directions are also outlined, including diagnostic utility and patient-centered outcomes.

1 Follower
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments of PET amyloid ligands have made it possible to visualize the presence of Aβ deposition in the brain of living participants and to assess the consequences especially in individuals with no objective sign of cognitive deficits. The present review will focus on amyloid imaging in cognitively normal elderly, asymptomatic at-risk populations, and individuals with subjective cognitive decline. It will cover the prevalence of amyloid-positive cases amongst cognitively normal elderly, the influence of risk factors for AD, the relationships to cognition, atrophy and prognosis, longitudinal amyloid imaging and ethical aspects related to amyloid imaging in cognitively normal individuals. Almost ten years of research have led to a few consensual and relatively consistent findings: some cognitively normal elderly have Aβ deposition in their brain, the prevalence of amyloid-positive cases increases in at-risk populations, the prognosis for these individuals is worse than for those with no Aβ deposition, and significant increase in Aβ deposition over time is detectable in cognitively normal elderly. More inconsistent findings are still under debate; these include the relationship between Aβ deposition and cognition and brain volume, the sequence and cause-to-effect relations between the different AD biomarkers, and the individual outcome associated with an amyloid positive versus negative scan. Preclinical amyloid imaging also raises important ethical issues. While amyloid imaging is definitely useful to understand the role of Aβ in early stages, to define at-risk populations for research or for clinical trial, and to assess the effects of anti-amyloid treatments, we are not ready yet to translate research results into clinical practice and policy. More researches are needed to determine which information to disclose from an individual amyloid imaging scan, the way of disclosing such information and the impact on individuals and on society.
    Clinical neuroimaging 03/2013; 2(1):356-365. DOI:10.1016/j.nicl.2013.02.006 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent human trials of treatments for Alzheimer's disease (AD) have been largely unsuccessful, raising the idea that treatment may need to be started earlier in the disease, well before cognitive symptoms appear. An early marker of AD pathology is therefore needed and it is debated as to whether amyloid-βAβ? plaque load may serve this purpose. We investigated this in the hAPP-J20 AD mouse model by studying disease pathology at 6, 12, 24 and 36 weeks. Using robust stereological methods, we found there is no neuron loss in the hippocampal CA3 region at any age. However loss of neurons from the hippocampal CA1 region begins as early as 12 weeks of age. The extent of neuron loss increases with age, correlating with the number of activated microglia. Gliosis was also present, but plateaued during aging. Increased hyperactivity and spatial memory deficits occurred at 16 and 24 weeks. Meanwhile, the appearance of plaques and oligomeric Aβ were essentially the last pathological changes, with significant changes only observed at 36 weeks of age. This is surprising given that the hAPP-J20 AD mouse model is engineered to over-expresses Aβ. Our data raises the possibility that plaque load may not be the best marker for early AD and suggests that activated microglia could be a valuable marker to track disease progression.
    PLoS ONE 04/2013; 8(4):e59586. DOI:10.1371/journal.pone.0059586 · 3.53 Impact Factor
  • Source
    European Journal of Nuclear Medicine 04/2013; 40(7). DOI:10.1007/s00259-013-2415-x · 5.38 Impact Factor
Show more