Article

Glucose and SIRT2 reciprocally mediate the regulation of keratin 8 by lysine acetylation.

Department of Molecular and Integrative Physiology and 2 Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109.
The Journal of Cell Biology (Impact Factor: 9.69). 01/2013; DOI: 10.1083/jcb.201209028
Source: PubMed

ABSTRACT Lysine acetylation is an important posttranslational modification that regulates microtubules and microfilaments, but its effects on intermediate filament proteins (IFs) are unknown. We investigated the regulation of keratin 8 (K8), a type II simple epithelial IF, by lysine acetylation. K8 was basally acetylated and the highly conserved Lys-207 was a major acetylation site. K8 acetylation regulated filament organization and decreased keratin solubility. Acetylation of K8 was rapidly responsive to changes in glucose levels and was up-regulated in response to nicotinamide adenine dinucleotide (NAD) depletion and in diabetic mouse and human livers. The NAD-dependent deacetylase sirtuin 2 (SIRT2) associated with and deacetylated K8. Pharmacologic or genetic inhibition of SIRT2 decreased K8 solubility and affected filament organization. Inhibition of K8 Lys-207 acetylation resulted in site-specific phosphorylation changes of K8. Therefore, K8 acetylation at Lys-207, a highly conserved residue among type II keratins and other IFs, is up-regulated upon hyperglycemia and down-regulated by SIRT2. Keratin acetylation provides a new mechanism to regulate keratin filaments, possibly via modulating keratin phosphorylation.

0 Bookmarks
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Keratin intermediate filament (IF) proteins are epithelial cell cytoskeletal components that provide structural stability and protection from cell stress, among other cellular and tissue-specific functions. Numerous human diseases are associated with IF gene mutations, but the function of keratins in the endocrine pancreas and their potential significance for glycaemic control are unknown. The impact of keratins on β-cell organisation and systemic glucose control was assessed using keratin 8 (K8) wild-type (K8(+/+)) and K8 knockout (K8(-/-)) mice. Islet β-cell keratins were characterised under basal conditions, in streptozotocin (STZ)-induced diabetes and in non-obese diabetic (NOD) mice. STZ-induced diabetes incidence and islet damage was assessed in K8(+/+) and K8(-/-) mice. K8 and K18 were the predominant keratins in islet β-cells and K8(-/-) mice expressed only remnant K18 and K7. K8 deletion resulted in lower fasting glucose levels, increased glucose tolerance and insulin sensitivity, blunted glucose stimulated insulin secretion and decreased pancreatic insulin content. GLUT2 localisation and insulin vesicle morphology were disrupted in K8(-/-) β-cells. The increased levels of cytoplasmic GLUT2 correlated with resistance to high-dose STZ-induced injury in K8(-/-) mice. However, K8 deletion conferred no long-term protection from STZ-induced diabetes and prolonged STZ-stress caused increased exocrine damage in K8(-/-) mice. β-cell keratin upregulation occurred 2 weeks after low-dose STZ-treated K8(+/+) mice and in diabetic NOD mice, suggesting a role for keratins particularly in non-acute islet stress responses. These results demonstrate previously unrecognised functions for keratins in β-cell intracellular organisation as well as for systemic blood glucose control under basal conditions and in diabetes-induced stress.
    Journal of Cell Science 10/2013; · 5.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intermediate filaments (IFs) are cytoskeletal and nucleoskeletal structures that provide mechanical and stress-coping resilience to cells, contribute to subcellular and tissue-specific biological functions, and facilitate intracellular communication. IFs, including nuclear lamins and those in the cytoplasm (keratins, vimentin, desmin, neurofilaments and glial fibrillary acidic protein, among others), are functionally regulated by post-translational modifications (PTMs). Proteomic advances highlight the enormous complexity and regulatory potential of IF protein PTMs, which include phosphorylation, glycosylation, sumoylation, acetylation and prenylation, with novel modifications becoming increasingly appreciated. Future studies will need to characterize their on-off mechanisms, crosstalk and utility as biomarkers and targets for diseases involving the IF cytoskeleton.
    Nature Reviews Molecular Cell Biology 02/2014; 15(3):163-77. · 37.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acetylation of α-tubulin on lysine 40 is one of the major posttranslational modifications of microtubules. The acetylation reaction is catalyzed by alpha-tubulin N-acetyltransferase and the modification can be reversed by either the NAD-independent class II histone deacetylase HDAC6 or the NAD-dependent deacetylase SIRT2. In this study, we assessed to what extent cellular NAD levels are involved in the regulation of the α-tubulin acetylation state. Cells were subjected to different treatments known to influence cellular NAD content. In response to NAD depletion caused by inhibition of NAD synthesis from nicotinamide, α-tubulin was hyperacetylated. Under these conditions, the normal tubulin acetylation state could be restored by providing the cells with alternative NAD precursors. Likewise, decreasing the rate of endogenous NAD consumption using an inhibitor of poly-ADP-ribosylation also stabilized the acetylation of α-tubulin. Conversely, the level of acetylated α-tubulin decreased when NAD synthesis was enhanced by overexpression of an NAD biosynthetic enzyme. Combined, these results show that the tubulin acetylation status is reciprocally regulated by cellular NAD levels. Furthermore, we provide evidence confirming that the NAD-dependent regulation of tubulin acetylation is mediated by SIRT2.
    DNA repair 05/2014; · 3.36 Impact Factor

Preview

Download
1 Download
Available from