Functional Profiling Discovers the Dieldrin Organochlorinated Pesticide Affects Leucine Availability in Yeast

Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720.
Toxicological Sciences (Impact Factor: 3.85). 01/2013; 132(2). DOI: 10.1093/toxsci/kft018
Source: PubMed


Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson's and Alzheimer's disease, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/PKA pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.

Download full-text


Available from: Stephen R Lantz, Oct 31, 2014
21 Reads
  • Source
    • "Inherent in high-throughput functional toxicology methods is the use of computational analyses to decipher toxicant mechanisms of action. Various studies have utilized overenrichment or Cytoscape software (Shannon et al., 2003) to uncover yeast genetic networks affected by a toxicant (Zhou et al., 2009; North et al., 2011; Gaytán et al., 2013a,b; Kaiser et al., 2013). Others, by integrating data from many distinct yeast chemical-genetic datasets, have assembled chemical-phenotype networks that helped identify potential effects elicited by various compounds (Venancio et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds-information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes.
    Frontiers in Genetics 05/2014; 5:110. DOI:10.3389/fgene.2014.00110
  • Source
    • "Dose-finding and growth curves were performed as in [16]. Toxaphene and MPA (Sigma Aldrich) solutions were prepared in dimethylsulfoxide (DMSO) and added to the desired final concentrations (1% or less by volume) with at least three technical replicates per dose. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to toxaphene, an environmentally persistent mixture of chlorinated terpenes previously utilized as an insecticide, has been associated with various cancers and diseases such as amyotrophic lateral sclerosis. Nevertheless, the cellular and molecular mechanisms responsible for these toxic effects have not been established. In this study, we used a functional approach in the model eukaryote Saccharomyces cerevisiae to demonstrate that toxaphene affects yeast mutants defective in (1) processes associated with transcription elongation and (2) nutrient utilization. Synergistic growth defects are observed upon exposure to both toxaphene and the known transcription elongation inhibitor mycophenolic acid (MPA). However, unlike MPA, toxaphene does not deplete nucleotides and additionally has no detectable effect on transcription elongation. Many of the yeast genes identified in this study have human homologs, warranting further investigations into the potentially conserved mechanisms of toxaphene toxicity.
    PLoS ONE 11/2013; 8(11):e81253. DOI:10.1371/journal.pone.0081253 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dimethyl sulfoxide (DMSO) is frequently utilized as a solvent in toxicological and pharmaceutical investigations. It is therefore important to establish the cellular and molecular targets of DMSO in order to differentiate its intrinsic effects from those elicited by a compound of interest. We performed a genome-wide functional screen in Saccharomyces cerevisiae to identify deletion mutants exhibiting sensitivity to 1% DMSO, a concentration standard to yeast chemical profiling studies. We report that mutants defective in Golgi/ER transport are sensitive to DMSO, including those lacking components of the conserved oligomeric Golgi (COG) complex. Moreover, strains deleted for members of the SWR1 histone exchange complex are hypersensitive to DMSO, with additional chromatin remodeling mutants displaying a range of growth defects. We also identify DNA repair genes important for DMSO tolerance. Finally, we demonstrate that overexpression of histone H2A.Z, which replaces chromatin-associated histone H2A in a SWR1-catalyzed reaction, confers resistance to DMSO. Many yeast genes described in this study have homologs in more complex organisms, and the data provided is applicable to future investigations into the cellular and molecular mechanisms of DMSO toxicity.
    Frontiers in Genetics 08/2013; 4:154. DOI:10.3389/fgene.2013.00154
Show more