Article

Functional Profiling Discovers the Dieldrin Organochlorinated Pesticide Affects Leucine Availability in Yeast

Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720.
Toxicological Sciences (Impact Factor: 4.48). 01/2013; 132(2). DOI: 10.1093/toxsci/kft018
Source: PubMed

ABSTRACT Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson's and Alzheimer's disease, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/PKA pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.

0 Followers
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The increased presence of chemical contaminants in the environment is an undeniable concern to human health and ecosystems. Historically, by relying heavily upon costly and laborious animal-based toxicity assays, the field of toxicology has often neglected examinations of the cellular and molecular mechanisms of toxicity for the majority of compounds-information that, if available, would strengthen risk assessment analyses. Functional toxicology, where cells or organisms with gene deletions or depleted proteins are used to assess genetic requirements for chemical tolerance, can advance the field of toxicity testing by contributing data regarding chemical mechanisms of toxicity. Functional toxicology can be accomplished using available genetic tools in yeasts, other fungi and bacteria, and eukaryotes of increased complexity, including zebrafish, fruit flies, rodents, and human cell lines. Underscored is the value of using less complex systems such as yeasts to direct further studies in more complex systems such as human cell lines. Functional techniques can yield (1) novel insights into chemical toxicity; (2) pathways and mechanisms deserving of further study; and (3) candidate human toxicant susceptibility or resistance genes.
    Frontiers in Genetics 05/2014; 5:110. DOI:10.3389/fgene.2014.00110
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology. Copyright © 2015 Elsevier B.V. All rights reserved.
    Mutation Research/Reviews in Mutation Research 01/2015; 764. DOI:10.1016/j.mrrev.2015.01.002 · 7.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to toxaphene, an environmentally persistent mixture of chlorinated terpenes previously utilized as an insecticide, has been associated with various cancers and diseases such as amyotrophic lateral sclerosis. Nevertheless, the cellular and molecular mechanisms responsible for these toxic effects have not been established. In this study, we used a functional approach in the model eukaryote Saccharomyces cerevisiae to demonstrate that toxaphene affects yeast mutants defective in (1) processes associated with transcription elongation and (2) nutrient utilization. Synergistic growth defects are observed upon exposure to both toxaphene and the known transcription elongation inhibitor mycophenolic acid (MPA). However, unlike MPA, toxaphene does not deplete nucleotides and additionally has no detectable effect on transcription elongation. Many of the yeast genes identified in this study have human homologs, warranting further investigations into the potentially conserved mechanisms of toxaphene toxicity.
    PLoS ONE 11/2013; 8(11):e81253. DOI:10.1371/journal.pone.0081253 · 3.53 Impact Factor