Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation.

Department of Environmental Science, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea.
Chemosphere (Impact Factor: 3.14). 01/2013; DOI: 10.1016/j.chemosphere.2012.12.033
Source: PubMed

ABSTRACT Some metal oxide nanoparticles are photoreactive, thus raising concerns regarding phototoxicity. This study evaluated ecotoxic effects of zinc oxide nanoparticles and titanium dioxide nanoparticles to the green algae Pseudokirchneriella subcapitata under visible, UVA, and UVB irradiation conditions. The nanoparticles were prepared in algal test medium, and the test units were pre-irradiated by UV light in a photoreactor. Algal assays were also conducted with visible, UVA or UVB lights only without nanoparticles. Algal growth was found to be inhibited as the nanoparticle concentration increased, and ZnO NPs caused destabilization of the cell membranes. We also noted that the inhibitory effects on the growth of algae were not enhanced under UV pre-irradiation conditions. This phenomenon was attributed to the photocatalytic activities of ZnO NPs and TiO(2) NPs in both the visible and UV regions. The toxicity of ZnO NPs was almost entirely the consequence of the dissolved free zinc ions. This study provides us with an improved understanding of toxicity of photoreactive nanoparticles as related to the effects of visible and UV lights.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanoparticles (NPs) are being used in many industries ranging from medical, textile, automobile, consumer products, etc. This may increase the probability of their (NPs) release into the environment and fresh water ecosystems. The present study focuses on testing the potential effect of iron oxide, nanocomposite of cadmium sulfide and silver sulfide, cadmium sulfide and silver sulfide nanoparticles (NPs) on a fresh water alga Mougeotia sp. as the model organism. The alga was treated with different concentrations of NPs (0.1–25 mg/L). The NPs exposure caused lipid peroxidation and ROS production, and suppressed the antioxidant defense system such as catalase, glutathione reductase, and superoxide dismutase. Adsorption of NPs on algal surface and membrane damage were confirmed through microscopic evaluation and increase in protein content in extracellular medium. The present investigation pointed out the ecological implications of NPs. The study warrants the need for regulatory agencies to monitor and regulate the use of NPs.
    Colloids and surfaces B: Biointerfaces 11/2014; · 4.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To study the environmental impact of nanoparticles, the sludges of wastewater (WWTS) and water treatment (WTS) plants enriched with ZnO nanoparticles were added to agricultural soil, and the toxic effects of the nanoparticles were studied using a microcosm system based on the soil. The WWTS treated soils were characterised by statistically significant decreases (p<0.05) in Vicia sativa germination at the lowest (76.2%) and medium (95.2%) application rates, decreases in the fresh biomass for Triticum aestivum (19.5%), Raphanus sativus (64.1%), V. sativa (37.4%) and Eisenia fetida (33.6%) at the highest application rate and a dose-related significant increase (p<0.05) in earthworm mortality. In WTS amended soils, significant reductions (p<0.05) of the fresh biomass (17.2%) and the chlorophyll index (24.4%) for T. aestivum and the fresh biomass for R. sativus (31.4%) were only recorded at the highest application doses. In addition, the soil phosphatase enzymatic activity decreased significantly (p<0.05) in both WWTS (dose related) and WTS treatments. For water organisms, a slight inhibition of the growth of Chlorella vulgaris was observed (WWTS treated soils), along with statistically significant dose-related inhibition responses on total glutathione cell content, and statistically significant dose-related induction responses on the glutathione S-transferase enzyme activity and the reactive oxygen species generation on the RTG-2 fish cell line.
    Science of The Total Environment 09/2014; 497-498C:688-696. · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In view of the increasing usage of anatase and rutile crystalline phases of titania NPs in the consumer products, their entry into the aquatic environment may pose a serious risk to the ecosystem. In the present study, the possible toxic impact of anatase and rutile nanoparticles (individually and in binary mixture) was investigated using freshwater microalgae, Chlorella sp. at low exposure concentrations (0.25, 0.5 and 1mg/L) in freshwater medium under UV irradiation. Reduction of cell viability as well as a reduction in chlorophyll content were observed due to the presence of NPs. An antagonistic effect was noted at certain concentrations of binary mixture such as (0.25, 0.25), (0.25, 0.5), and (0.5, 0.5) mg/L, and an additive effect for the other combinations, (0.25, 1), (0.5, 0.25), (0.5, 1), (1, 0.25), (1, 0.5), and (1, 1) mg/L. The hydrodynamic size analyses in the test medium revealed that rutile NPs were more stable in lake water than the anatase and binary mixtures [at 6h, the sizes of anatase (1mg/L), rutile NPs (1mg/L), and binary mixture (1, 1mg/L) were 948.83±35.01nm, 555.74±19.93nm, and 1620.24±237.87nm, respectively]. The generation of oxidative stress was found to be strongly dependent on the crystallinity of the nanoparticles. The transmission electron microscopic images revealed damages in the nucleus and cell membrane of algal cells due to the interaction of anatase NPs, whereas rutile NPs were found to cause chloroplast and internal organelle damages. Mis-shaped chloroplasts, lack of nucleus, and starch-pyrenoid complex were noted in binary-treated cells. The findings from the current study may facilitate the environmental risk assessment of titania NPs in an aquatic ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.
    Aquatic Toxicology. 02/2015; 161C.


Available from
May 19, 2014