Dopaminergic foundations of schizotypy as measured by the German version of the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE)—A suitable endophenotype of schizophrenia

Personality Psychology and Individual Differences, Department of Psychology, Justus-Liebig-University Giessen Giessen, Germany.
Frontiers in Human Neuroscience (Impact Factor: 3.63). 01/2013; 7:1. DOI: 10.3389/fnhum.2013.00001
Source: PubMed


The concept of schizotypy or "psychosis proneness" captures individual differences in perceptual, cognitive, and affective experiences that may relate to a range of psychotic disorders. The concept is an important way to assess the contribution of pre-existing psychological and genetically based biological features to the development of illnesses such as schizophrenia (so called endophenotypes). The Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE) is a widely used multi-dimensional measure of the construct and consists of four scales which mirror several groups of psychotic symptoms: Unusual Experiences (UnEx; positive symptoms), Cognitive Disorganization (CogDis; cognitive symptoms), Introvertive Anhedonia (IntAn; negative symptoms), and Impulsive Nonconformity (ImpNon; impulsive and antisocial symptoms). For the purpose of evaluating the suitability of schizotypy as an endophenotype of schizophrenia the current version of the O-LIFE was translated into German: its psychometric properties (including re-test reliability and construct validity) were examined in a large sample (n > 1200) and compared to those of the English original. The German version was both highly reliable and consistent with the original. The study aimed to show that schizotypy as measured by the O-LIFE can indeed be regarded as an endophenotype of schizophrenia in terms of genetic associations regarding relevant dopamine-related candidate polymorphisms of schizotypy [i.e., Val(158)Met-polymorphism of the COMT gene, uVNTR of the MAOA gene, Taq1A-polymorphism of the DRD2 gene, VNTR of the SLC6A3 (DAT) gene]. We also wanted to compare the genetic associations of the O-LIFE to those published using other operationalizations of schizotypy. Our results show a large number of significant associations and borderline-significant trends between the O-LIFE sub-scales and a range of genes, thereby supporting using the O-LIFE in the search for endophenotypic markers.

Download full-text


Available from: Phillip Grant,
  • Source
    • "patients present with a later age of onset of psychotic illness and fewer negative symptoms (Murphy et al., 1999). A growing body of evidence suggests that schizotypy is an endophenotype for schizophrenia (Siever et al., 1990; Kendler et al., 1993; Bergman et al., 1996; Cadenhead et al., 2000; Vollema and Hoijtink, 2000; Fanous et al., 2007; Grant et al., 2013). An excess of schizotypal traits has also been reported in people with 22q11.2DS "
    [Show abstract] [Hide abstract]
    ABSTRACT: 22q11.2 deletion syndrome (22q11.2DS) is associated with high rates of psychotic disorder, particularly schizophrenia. The deletion is considered to be a biological model for understanding this debilitating psychiatric disorder. It is unclear whether the psychotic manifestations in 22q11.2DS are similar to those in schizophrenia patients without the deletion. Catechol-O-methyltransferase (COMT), a positional candidate gene for schizophrenia, resides within the 22q11.2 region. It remains unknown whether hemizygosity for this gene is associated with risk of psychotic disorder. This study includes 83 adults with 22q11.2DS, 90 non-deleted individuals with schizophrenia, and 316 normal controls. Psychopathology was assessed using the Schedules for Clinical Assessment in Neuropsychiatry, the Schedules for the Assessment of Positive and Negative Symptoms and the Global Assessment Scale. Schizotypy was assessed with the Kings Schizotypy Questionnaire and Oxford Liverpool Inventory of Feelings and Emotions. IQ estimates were also obtained. Adults with 22q11.2DS were genotyped for a number of COMT polymorphisms as well as the Ashkenazi risk haplotype. This study confirms high rates of psychotic disorder (29%) in individuals with 22q11.2DS of which the majority had schizophrenia (22%). There does not appear to be a differential expression of schizophrenic symptom clusters in 22q11.2DS in relation to sporadic schizophrenia, though schizophrenia in 22q11.2DS seems to be less severe in terms of global assessment scores. Psychosis proneness seems to be of genetic origin in 22q11.2DS as individuals with 22q11.2DS without schizophrenia had higher schizotypy scores than normal controls. Finally, COMT was not associated with schizophrenia status or schizotypy.
    Schizophrenia Research 03/2014; 153(1-3). DOI:10.1016/j.schres.2014.01.020 · 3.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concept of a (single) limbic system is shown to be outmoded. Instead, anatomical, neurophysiological, functional neuroimaging, and neuropsychological evidence is described that anterior limbic and related structures including the orbitofrontal cortex and amygdala are involved in emotion, reward valuation, and reward-related decision-making (but not memory), with the value representations transmitted to the anterior cingulate cortex for action-outcome learning. In this ‘emotion limbic system’ a computational principle is that feedforward pattern association networks learn associations from visual, olfactory and auditory stimuli, to primary reinforcers such as taste, touch, and pain. In primates including humans this learning can be very rapid and rule-based, with the orbitofrontal cortex overshadowing the amygdala in this learning important for social and emotional behaviour. Complementary evidence is described showing that the hippocampus and limbic structures to which it is connected including the posterior cingulate cortex and the fornix-mammillary body-anterior thalamus-posterior cingulate circuit are involved in episodic or event memory, but not emotion. This ‘hippocampal system’ receives information from neocortical areas about spatial location, and objects, and can rapidly associate this information together by the different computational principle of autoassociation in the CA3 region of the hippocampus involving feedback. The system can later recall the whole of this information in the CA3 region from any component, a feedback process, and can recall the information back to neocortical areas, again a feedback (to neocortex) recall process. Emotion can enter this memory system from the orbitofrontal cortex etc, and be recalled back to the orbitofrontal cortex etc during memory recall, but the emotional and hippocampal networks or ‘limbic systems’ operate by different computational principles, and operate independently of each other except insofar as an emotional state or reward value attribute may be part of an episodic memory.
    Cortex 01/2013; 62. DOI:10.1016/j.cortex.2013.12.005 · 5.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective Although neuronal activity drives all aspects of cortical development, how human brain rhythms spontaneously mature remains an active area of research. We sought to systematically evaluate the emergence of human brain rhythms and functional cortical networks over early development. Methods We examined cortical rhythms and coupling patterns from birth through adolescence in a large cohort of healthy children (n=384) using scalp electroencephalogram (EEG) in the sleep state. Results We found that the emergence of brain rhythms follows a stereotyped sequence over early development. In general, higher frequencies increase in prominence with striking regional specificity throughout development. The coordination of these rhythmic activities across brain regions follows a general pattern of maturation in which broadly distributed networks of low-frequency oscillations increase in density while networks of high frequency oscillations become sparser and more highly clustered. Conclusion Our results indicate that a predictable program directs the development of key rhythmic components and physiological brain networks over early development. Significance This work expands our knowledge of normal cortical development. The stereotyped neurophysiological processes observed at the level of rhythms and networks may provide a scaffolding to support critical periods of cognitive growth. Furthermore, these conserved patterns could provide a sensitive biomarker for cortical health across development.
    Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 01/2013; 125(7). DOI:10.1016/j.clinph.2013.11.028 · 3.10 Impact Factor
Show more