Spatial regulation of VEGF receptor endocytosis in angiogenesis.

Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Muenster, Faculty of Medicine, D-48149 Muenster, Germany.
Nature Cell Biology (Impact Factor: 20.06). 01/2013; DOI: 10.1038/ncb2679
Source: PubMed

ABSTRACT Activities as diverse as migration, proliferation and patterning occur simultaneously and in a coordinated fashion during tissue morphogenesis. In the growing vasculature, the formation of motile, invasive and filopodia-carrying endothelial sprouts is balanced with the stabilization of blood-transporting vessels. Here, we show that sprouting endothelial cells in the retina have high rates of VEGF uptake, VEGF receptor endocytosis and turnover. These internalization processes are opposed by atypical protein kinase C activity in more stable and mature vessels. aPKC phosphorylates Dab2, a clathrin-associated sorting protein that, together with the transmembrane protein ephrin-B2 and the cell polarity regulator PAR-3, enables VEGF receptor endocytosis and downstream signal transduction. Accordingly, VEGF receptor internalization and the angiogenic growth of vascular beds are defective in loss-of-function mice lacking key components of this regulatory pathway. Our work uncovers how vessel growth is dynamically controlled by local VEGF receptor endocytosis and the activity of cell polarity proteins.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The distribution and patterning of blood vessels is controlled by vascular endothelial growth factor (VEGF), which is precisely regulated throughout its life cycle. Okabe et al. show that VEGF is titrated away from the endothelium by adjacent neurons via endocytosis, regulating density and trajectory of blood vessels.
    Cell 10/2014; 159(3):473-4. DOI:10.1016/j.cell.2014.10.008 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular and nervous systems, two major networks in mammalian bodies, show a high degree of anatomical parallelism and functional crosstalk. During development, neurons guide and attract blood vessels, and consequently this parallelism is established. Here, we identified a noncanonical neurovascular interaction in eye development and disease. VEGFR2, a critical endothelial receptor for VEGF, was more abundantly expressed in retinal neurons than in endothelial cells, including endothelial tip cells. Genetic deletion of VEGFR2 in neurons caused misdirected angiogenesis toward neurons, resulting in abnormally increased vascular density around neurons. Further genetic experiments revealed that this misdirected angiogenesis was attributable to an excessive amount of VEGF protein around neurons caused by insufficient engulfment of VEGF by VEGFR2-deficient neurons. Moreover, absence of neuronal VEGFR2 caused misdirected regenerative angiogenesis in ischemic retinopathy. Thus, this study revealed neurovascular crosstalk and unprecedented cellular regulation of VEGF: retinal neurons titrate VEGF to limit neuronal vascularization.
    Cell 10/2014; 159(3):584-596. DOI:10.1016/j.cell.2014.09.025 · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During development and in various diseases of the CNS, new blood vessel formation starts with endothelial tip cell selection and vascular sprout migration, followed by the establishment of functional, perfused blood vessels. Here we describe a method that allows the assessment of these distinct angiogenic steps together with antibody-based protein detection in the postnatal mouse brain. Intravascular and perivascular markers such as Evans blue (EB), isolectin B4 (IB4) or laminin (LN) are used alongside simultaneous immunofluorescence on the same sections. By using confocal laser-scanning microscopy and stereological methods for analysis, detailed quantification of the 3D postnatal brain vasculature for perfused and nonperfused vessels (e.g., vascular volume fraction, vessel length and number, number of branch points and perfusion status of the newly formed vessels) and characterization of sprouting activity (e.g., endothelial tip cell density, filopodia number) can be obtained. The entire protocol, from mouse perfusion to vessel analysis, takes ∼10 d.
    Nature Protocols 01/2015; 10(1):53-74. DOI:10.1038/nprot.2015.002 · 7.78 Impact Factor


Available from
May 27, 2014