Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme

Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Complutense University, Madrid, Spain.
PLoS ONE (Impact Factor: 3.23). 01/2013; 8(1):e54795. DOI: 10.1371/journal.pone.0054795
Source: PubMed

ABSTRACT Cannabinoids, the active components of marijuana and their derivatives, are currently investigated due to their potential therapeutic application for the management of many different diseases, including cancer. Specifically, Δ(9)-Tetrahydrocannabinol (THC) and Cannabidiol (CBD) - the two major ingredients of marijuana - have been shown to inhibit tumor growth in a number of animal models of cancer, including glioma. Although there are several pharmaceutical preparations that permit the oral administration of THC or its analogue nabilone or the oromucosal delivery of a THC- and CBD-enriched cannabis extract, the systemic administration of cannabinoids has several limitations in part derived from the high lipophilicity exhibited by these compounds. In this work we analyzed CBD- and THC-loaded poly-ε-caprolactone microparticles as an alternative delivery system for long-term cannabinoid administration in a murine xenograft model of glioma. In vitro characterization of THC- and CBD-loaded microparticles showed that this method of microencapsulation facilitates a sustained release of the two cannabinoids for several days. Local administration of THC-, CBD- or a mixture (1∶1 w:w) of THC- and CBD-loaded microparticles every 5 days to mice bearing glioma xenografts reduced tumour growth with the same efficacy than a daily local administration of the equivalent amount of those cannabinoids in solution. Moreover, treatment with cannabinoid-loaded microparticles enhanced apoptosis and decreased cell proliferation and angiogenesis in these tumours. Our findings support that THC- and CBD-loaded microparticles could be used as an alternative method of cannabinoid delivery in anticancer therapies.

Download full-text


Available from: Guillermo Velasco, Mar 11, 2014
1 Follower
51 Reads
  • Source
    • "Pure CBD is known to reduce glioma formation ( Hernán Pérez de la Ossa et al . 2013 ) , to inhibit cancer cell invasion ( Ramer et al . 2010 , 2012 ) and angiogenesis ( Solinas et al . 2012 ) and to decrease the growth of breast carcinoma and lung metastasis in rodents ( Ligresti et al . 2006 ; Shrivastava et al . 2011 ; Ramer et al . 2012 ) . Furthermore , CBD BDS has been shown to reduce the growth of xenograft tumou"
    [Show abstract] [Hide abstract]
    ABSTRACT: Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo. Proliferation was evaluated in colorectal carcinoma (DLD-1 and HCT116) as well as in healthy colonic cells using the MTT assay. CBD BDS binding was evaluated by its ability to displace [(3)H]CP55940 from human cannabinoid CB1 and CB2 receptors. In vivo, the effect of CBD BDS was examined on the preneoplastic lesions (aberrant crypt foci), polyps and tumours induced by the carcinogenic agent azoxymethane (AOM) as well as in a xenograft model of colon cancer in mice. CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells. The effect of CBD BDS was counteracted by selective CB1 and CB2 receptor antagonists. Pure CBD reduced cell proliferation in a CB1-sensitive antagonist manner only. In binding assays, CBD BDS showed greater affinity than pure CBD for both CB1 and CB2 receptors, with pure CBD having very little affinity. In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer. CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients.
    Phytomedicine: international journal of phytotherapy and phytopharmacology 12/2013; 21(5). DOI:10.1016/j.phymed.2013.11.006 · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromenopyrazolediones have been designed and synthesized as anticancer agents using the multi-biological target concept that involves quinone cytotoxicity and cannabinoid antitumor properties. In cell cytotoxicity assays, these chromenopyrazolediones have antiproliferative activity against human prostate cancer and hepatocellular carcinoma. It has been shown that the most potent, derivative 4 (PM49), inhibits prostate LNCaP cell viability (IC50 = 15 μM) through a mechanism involving oxidative stress, PPARγ receptor and partially CB1 receptor. It acts on prostate cell growth by causing G0/G1 phase arrest and triggering apoptosis as assessed by flow cytometry measurements. In the in vivo treatment, compound 4 at 2 mg/kg, blocks the growth of LNCaP tumors and reduces the growth of PC-3 tumors generated in mice. These studies suggest that 4 is a good potential anticancer agent against hormone-sensitive prostate cancer.
    European Journal of Medicinal Chemistry 10/2013; 70C:111-119. DOI:10.1016/j.ejmech.2013.09.043 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During parenchymal brain metastasis formation tumor cells need to migrate through cerebral endothelial cells, which form the morphological basis of the blood-brain barrier (BBB). The mechanisms of extravasation of tumor cells are highly uncharacterized, but in some aspects recapitulate the diapedesis of leukocytes. Extravasation of leukocytes through the BBB is decreased by the activation of type 2 cannabinoid receptors (CB2); therefore, in the present study we sought to investigate the role of CB2 receptors in the interaction of melanoma cells with the brain endothelium. First, we identified the presence of CB1, CB2(A), GPR18 (transcriptional variant 1) and GPR55 receptors in brain endothelial cells, while melanoma cells expressed CB1, CB2(A), GPR18 (transcriptional variants 1 and 2), GPR55 and GPR119. We observed that activation of CB2 receptors with JWH-133 reduced the adhesion of melanoma cells to the layer of brain endothelial cells. JWH-133 decreased the transendothelial migration rate of melanoma cells as well. Our results suggest that changes induced in endothelial cells are critical in the mediation of the effect of CB2 agonists. Our data identify CB2 as a potential target in reducing the number of brain metastastes originating from melanoma.
    International Journal of Molecular Sciences 05/2014; 15(5):8063-74. DOI:10.3390/ijms15058063 · 2.86 Impact Factor
Show more