Transforming Growth Factor β Neutralization Ameliorates Pre-Existing Hepatic Fibrosis and Reduces Cholangiocarcinoma in Thioacetamide-Treated Rats

Medical University Graz, Austria
PLoS ONE (Impact Factor: 3.53). 01/2013; 8(1):e54499. DOI: 10.1371/journal.pone.0054499
Source: PubMed

ABSTRACT Considerable evidence has demonstrated that transforming growth factor β (TGF-β) plays a key role in hepatic fibrosis, the final common pathway for a variety of chronic liver diseases leading to liver insufficiency. Although a few studies have reported that blocking TGF-β with soluble receptors or siRNA can prevent the progression of hepatic fibrosis, as yet no evidence has been provided that TGF-β antagonism can improve pre-existing hepatic fibrosis. The aim of this study was to examine the effects of a murine neutralizing TGF-β monoclonal antibody (1D11), in a rat model of thioacetamide (TAA)-induced hepatic fibrosis. TAA administration for 8 weeks induced extensive hepatic fibrosis, whereupon 1D11 dosing was initiated and maintained for 8 additional weeks. Comparing the extent of fibrosis at two time points, pre- and post-1D11 dosing, we observed a profound regression of tissue injury and fibrosis upon treatment, as reflected by a reduction of collagen deposition to a level significantly less than that observed before 1D11 dosing. Hepatic TGF-β1 mRNA, tissue hydroxyproline, and plasminogen activator inhibitor 1 (PAI-1) levels were significantly elevated at the end of the 8 week TAA treatment. Vehicle and antibody control groups demonstrated progressive injury through 16 weeks, whereas those animals treated for 8 weeks with 1D11 showed striking improvement in histologic and molecular endpoints. During the course of tissue injury, TAA also induced cholangiocarcinomas. At the end of study, the number and area of cholangiocarcinomas were significantly diminished in rats receiving 1D11 as compared to control groups, presumably by the marked reduction of supporting fibrosis/stroma. The present study demonstrates that 1D11 can reverse pre-existing hepatic fibrosis induced by extended dosing of TAA. The regression of fibrosis was accompanied by a marked reduction in concomitantly developed cholangiocarcinomas. These data provide evidence that therapeutic dosing of a TGF-β antagonist can diminish and potentially reverse hepatic fibrosis and also reduce the number and size of attendant cholangiocarcinomas.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mating shuts down a 2-methoxyestradiol (2ME)-dependent, non-genomic activity that is responsible for accelerating egg transport in the rat oviduct. The aims of this work were to investigate the role of TGFβ1 in this 2ME-reduced activity and to determine the effect of mating on the expression and distribution of TGFβ1 and its receptor TGFBR3 in the rat oviduct. We determined the level of TGFβ1 in the plasma and oviductal fluid at 1, 3, or 6 hr during Day 1 of the oestrous cycle in unmated or mated animals. We then examined if 2ME accelerates oviductal egg transport in unmated rats that were previously treated with a neutralizing TGFβ1 antibody. The expression of Tgfb1 and Tgfbr3 mRNA and the level and distribution of TGFBR3 protein in the oviduct were also determined at these time points. Mating decreased TGFβ1 in the plasma, but not in the oviductal fluid, whereas antibody neutralization of circulating TGFβ1 did not prevent the effect of 2ME on egg transport. Mating decreased Tgfb1 and hastened the increase in TGFBR3 abundance in the myosalpinx. These results indicate that mating decreased circulating levels of TGFβ1 without shutting down the non-genomic 2ME response that normally accelerates egg transport. Levels of Tgfb1 transcript and TGFBR3 protein, however, changed in the myosalpinx of mated rats, suggesting a role for mating-associated factors in the autocrine and paracrine effects of TGFβ in the oviduct. Mol. Reprod. Dev. 2014. © 2014 Wiley Periodicals, Inc.
    Molecular Reproduction and Development 11/2014; 81(11). DOI:10.1002/mrd.22427 · 2.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cholangiocarcinoma (CCA) is an aggressive biliary tract malignancy with limited treatment options and low survival rates. Currently, there are no curative medical therapies for CCA. Recent advances have enhanced our understanding of the genetic basis of this disease, and elucidated therapeutically relevant targets. Therapeutic efforts in development are directed at several key pathways due to genetic aberrations including receptor tyrosine kinase pathways, mutant IDH enzymes, the PI3K-AKT-mTOR pathway, and chromatin remodeling networks. A highly desmoplastic, hypovascular stroma is characteristic of CCAs and recent work has highlighted the importance of targeting this pathway via stromal myofibroblast depletion. Future efforts should concentrate on combination therapies with action against the cancer cell and the surrounding tumor stroma. As the mutational landscape of CCA is being illuminated, molecular profiling of patient tumors will enable identification of specific mutations and the opportunity to offer directed, personalized treatment options.
    Seminars in Liver Disease 11/2014; 34(4):456-64. DOI:10.1055/s-0034-1394144 · 5.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis is a pathological condition originating from liver damage that leads to excess accumulation of extracellular matrix (ECM) proteins in the liver. Viral infection, chronic injury, local inflammatory responses and oxidative stress are the major factors contributing to the onset and progression of liver fibrosis. Multiple cell types and various growth factors and inflammatory cytokines are involved in the induction and progression of this disease. Various strategies currently being tried to attenuate liver fibrosis include the inhibition of HSC activation or induction of their apoptosis, reduction of collagen production and deposition, decrease in inflammation, and liver transplantation. Liver fibrosis treatment approaches are mainly based on small drug molecules, antibodies, oligonucleotides (ODNs), siRNA and miRNAs. MicroRNAs (miRNA or miR) are endogenous noncoding RNA of ~22 nucleotides that regulate gene expression at post transcription level. There are several miRNAs having aberrant expressions and play a key role in the pathogenesis of liver fibrosis. Single miRNA can target multiple mRNAs, and we can predict its targets based on seed region pairing, thermodynamic stability of pairing and species conservation. For in vivo delivery, we need some additional chemical modification in their structure, and suitable delivery systems like micelles, liposomes and conjugation with targeting or stabilizing the moiety. Here, we discuss the role of miRNAs in fibrogenesis and current approaches of utilizing these miRNAs for treating liver fibrosis.
    Pharmaceutical Research 09/2014; DOI:10.1007/s11095-014-1497-x · 3.95 Impact Factor

Full-text (2 Sources)

Available from
Aug 22, 2014