ATP-Mediated Transactivation of the Epidermal Growth Factor Receptor in Airway Epithelial Cells Involves DUOX1-Dependent Oxidation of Src and ADAM17

University of Illinois at Chicago, United States of America
PLoS ONE (Impact Factor: 3.53). 01/2013; 8(1):e54391. DOI: 10.1371/journal.pone.0054391
Source: PubMed

ABSTRACT The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR) and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H(2)O(2) participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y(2) receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y(2)R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y(2)R activation as a proximal step in EGFR transactivation and downstream signaling.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dual oxidase 2 enzyme is a member of the reactive oxygen species-generating cell membrane NADPH oxidases involved in mucosal innate immunity. It is not known if the biological activity of dual oxidase 2 is mediated by direct bacterial killing by reactive oxygen species produced by the enzyme or by the same reactive oxygen species acting as second messengers that stimulate novel gene expression. To uncover the role of reactive oxygen species and dual oxidases as signaling molecules, we have dissected the pathway triggered by epidermal growth factor to induce mucins, the principal protective components of gastrointestinal mucus. We show that dual oxidase 2 is essential for selective epidermal growth factor induction of the transmembrane MUC3 and the secreted gel-forming MUC5AC mucins. Reactive oxygen species generated by dual oxidase 2 stabilize tyrosine phosphorylation of epidermal growth factor receptor and induce MUC3 and MUC5AC through persistent activation of extracellular signal-regulated kinases 1/2 – protein kinase C. Knocking down dual oxidase 2 by selective RNA targeting (siRNA) reduced epidermal growth factor receptor phosphorylation, and MUC3 and MUC5AC gene expression. Extracellular reactive oxygen species produced by dual oxidase 2, upon stimulation by epidermal growth factor, stabilize epidermal growth factor receptor phosphorylation and activate extracellular signal-regulated kinases 1/2 – protein kinase C which induce MUC5AC and MUC3. Extracellular reactive oxygen species produced by dual oxidase 2 that are known to directly kill bacteria, also contribute to the maintenance of the epidermal growth factor -amplification loop, which induces mucins. These data suggest a new function of dual oxidase 2 protein in the luminal protection of the gastrointestinal tract through the induction of mucin expression by growth factors.
    The International Journal of Biochemistry & Cell Biology 01/2015; 60. DOI:10.1016/j.biocel.2014.12.014 · 4.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determining the role of NADPH oxidases in the context of virus infection is an emerging area of research and our knowledge is still sparse. The expression of various isoforms of NOX/DUOX (NADPH oxidase/dual oxidase) in the epithelial cells (ECs) lining the respiratory tract renders them primary sites from which to orchestrate the host defence against respiratory viruses. Accumulating evidence reveals distinct facets of the involvement of NOX/DUOX in host antiviral and pro-inflammatory responses and in the control of the epithelial barrier integrity, with individual isoforms mediating co-operative, but surprisingly also opposing, functions. Although in vivo studies in mice are in line with some of these observations, a complete understanding of the specific functions of epithelial NOX/DUOX awaits lung epithelial-specific conditional knockout mice. The goal of the present review is to summarize our current knowledge of the role of individual NOX/DUOX isoforms expressed in the lung epithelium in the context of respiratory virus infections so as to highlight potential opportunities for therapeutic intervention.
    Clinical Science 03/2015; 128(6):337-47. DOI:10.1042/CS20140321 · 5.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen-activated protein kinase (MAPK) activation, and determine the relevant signaling pathways. p44/42 MAPK activation in a murine model of ventilator-induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells (AEC) were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch-mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch-activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two-hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy.This article is protected by copyright. All rights reserved
    The Journal of Physiology 07/2014; 592(20). DOI:10.1113/jphysiol.2014.277616 · 4.54 Impact Factor

Full-text (4 Sources)

Available from
Oct 16, 2014