Article

Prestimulus Oscillatory Activity over Motor Cortex Reflects Perceptual Expectations.

Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behavior, 6500 HB, Nijmegen, The Netherlands, Columbia University, Department of Psychology, New York, New York 10027, and Department of Psychology, University of Amsterdam, 1012 ZA, Amsterdam, The Netherlands.
Journal of Neuroscience (Impact Factor: 6.91). 01/2013; 33(4):1400-10. DOI: 10.1523/JNEUROSCI.1094-12.2013
Source: PubMed

ABSTRACT When perceptual decisions are coupled to a specific effector, preparatory motor cortical activity may provide a window into the dynamics of the perceptual choice. Specifically, previous studies have observed a buildup of choice-selective activity in motor regions over time reflecting the integrated sensory evidence provided by visual cortex. Here we ask how this choice-selective motor activity is modified by prior expectation during a visual motion discrimination task. Computational models of decision making formalize decisions as the accumulation of evidence from a starting point to a decision bound. Within this framework, expectation could change the starting point, rate of accumulation, or the decision bound. Using magneto-encephalography in human observers, we specifically tested for changes in the starting point in choice-selective oscillatory activity over motor cortex. Inducing prior expectation about motion direction biased subjects' perceptual judgments as well as the choice-selective motor activity in the 8-30 Hz frequency range before stimulus onset; the individual strength of these behavioral and neural biases were correlated across subjects. In the absence of explicit expectation cues, spontaneous biases in choice-selective activity were evident over motor cortex. These also predicted eventual perceptual choice and were, at least in part, induced by the choice on the previous trial. We conclude that both endogenous and explicitly induced perceptual expectations bias the starting point of decision-related activity, before the accumulation of sensory evidence.

0 Bookmarks
 · 
97 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perceptual confidence refers to the degree to which we believe in the accuracy of our percepts. Signal detection theory suggests that perceptual confidence is computed from an internal "decision variable," which reflects the amount of available information in favor of one or another perceptual interpretation of the sensory input. The neural processes underlying these computations have, however, remained elusive. Here, we used fMRI and multivariate decoding techniques to identify regions of the human brain that encode this decision variable and confidence during a visual motion discrimination task. We used observers' binary perceptual choices and confidence ratings to reconstruct the internal decision variable that governed the subjects' behavior. A number of areas in prefrontal and posterior parietal association cortex encoded this decision variable, and activity in the ventral striatum reflected the degree of perceptual confidence. Using a multivariate connectivity analysis, we demonstrate that patterns of brain activity in the right ventrolateral prefrontal cortex reflecting the decision variable were linked to brain signals in the ventral striatum reflecting confidence. Our results suggest that the representation of perceptual confidence in the ventral striatum is derived from a transformation of the continuous decision variable encoded in the cerebral cortex.
    Cerebral cortex (New York, N.Y. : 1991). 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, and decomposed task behavior into latent decision making parameters using an established computational model of the decision process. In direct contrast to previous theoretical accounts specifying a role for arousal in several discrete aspects of decision making, we found that pupil diameter was uniquely related to a model parameter representing variability in the rate of decision evidence accumulation: Periods of increased pupil size, reflecting heightened arousal, were characterized by greater variability in accumulation rate. Pupil diameter also correlated trial-by-trial with specific patterns of behavior that collectively are diagnostic of changing accumulation rate variability, and explained substantial individual differences in this computational quantity. These findings provide a uniquely clear account of how arousal state impacts decision making, and may point to a relationship between pupil-linked neuromodulation and behavioral variability. They also pave the way for future studies aimed at augmenting the precision with which people make decisions.
    PLoS Computational Biology 09/2014; 10(9):e1003854. · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to generate temporal predictions is fundamental for adaptive behavior. Precise timing at the time-scale of seconds is critical, for instance to predict trajectories or to select relevant information. What mechanisms form the basis for such accurate timing? Recent evidence suggests that (1) temporal predictions adjust sensory selection by controlling neural oscillations in time and (2) the motor system plays an active role in inferring "when" events will happen. We hypothesized that oscillations in the delta and beta bands are instrumental in predicting the occurrence of auditory targets. Participants listened to brief rhythmic tone sequences and detected target delays while undergoing magnetoencephalography recording. Prior to target occurrence, we found that coupled delta (1-3 Hz) and beta (18-22 Hz) oscillations temporally align with upcoming targets and bias decisions towards correct responses, suggesting that delta-beta coupled oscillations underpin prediction accuracy. Subsequent to target occurrence, subjects update their decisions using the magnitude of the alpha-band (10-14 Hz) response as internal evidence of target timing. These data support a model in which the orchestration of oscillatory dynamics between sensory and motor systems is exploited to accurately select sensory information in time.
    Cerebral cortex (New York, N.Y. : 1991). 05/2014;

Full-text

Download
61 Downloads
Available from
May 21, 2014