Article

Foxc1 controls the growth of the murine frontal bone rudiment by direct regulation of a Bmp response threshold of Msx2.

Development (Impact Factor: 6.27). 01/2013; DOI: 10.1242/dev.085225
Source: PubMed

ABSTRACT The mammalian skull vault consists of several intricately patterned bones that grow in close coordination. The growth of these bones depends on the precise regulation of the migration and differentiation of osteogenic cells from undifferentiated precursor cells located above the eye. Here, we demonstrate a role for Foxc1 in modulating the influence of Bmp signaling on the expression of Msx2 and the specification of these cells. Inactivation of Foxc1 results in a dramatic reduction in skull vault growth and causes an expansion of Msx2 expression and Bmp signaling into the area occupied by undifferentiated precursor cells. Foxc1 interacts directly with a Bmp responsive element in an enhancer upstream of Msx2, and acts to reduce the occupancy of P-Smad1/5/8. We propose that Foxc1 sets a threshold for the Bmp-dependent activation of Msx2, thus controlling the differentiation of osteogenic precursor cells and the rate and pattern of calvarial bone development.

0 Bookmarks
 · 
82 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural crest cells appear early during embryogenesis and give rise to many structures in the mature adult. In particular, a specific population of neural crest cells migrates to and populates developing cranial tissues. The ensuing differentiation of these cells via individually complex and often intersecting signaling pathways is indispensible to growth and development of the craniofacial complex. Much research has been devoted to this area of development with particular emphasis on cell signaling events required for physiologic development. Understanding such mechanisms will allow researchers to investigate ways in which they can be exploited in order to treat a multitude of diseases affecting the craniofacial complex. Knowing how these multipotent cells are driven towards distinct fates could, in due course, allow patients to receive regenerative therapies for tissues lost to a variety of pathologies. In order to realize this goal, nucleotide sequencing advances allowing snapshots of entire genomes and exomes are being utilized to identify molecular entities associated with disease states. Once identified, these entities can be validated for biological significance with other methods. A crucial next step is the integration of knowledge gleaned from observations in disease states with normal physiology to generate an explanatory model for craniofacial development. This review seeks to provide a current view of the landscape on cell signaling and fate determination of the neural crest and to provide possible avenues of approach for future research.
    Experimental Cell Research 07/2014; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The frontal and parietal bones form the major part of the calvarium and their primordia appear at the basolateral region of the head and grow apically. A spontaneous loss of Foxc1 function mutant mouse, congenital hydrocephalus (Foxc1(ch/ch) ), results in congenital hydrocephalus accompanied by defects in the apical part of the skull vault. We found that during the initiation stage of apical growth of the frontal bone primordium in the Foxc1(ch/ch) mouse, the Runx2 expression domain extended only to the basal side and bone sialoprotein (Bsp) and N-cadherin expression domains appeared only in the basal region. Fluorescent dye (DiI) labeling of the frontal primordium by ex-utero surgery confirmed that apical extension of the frontal bone primordium of the mouse was severely retarded, while extension to the basal side underneath the brain was largely unaffected. Consistent with this observation, decreased cell proliferation activity was seen at the apical tip but not the basal tip of the frontal bone primordium as determined by double detection of Runx2 transcripts and BrdU incorporation. Furthermore, expression of the osteogenic-related genes Bmp4 and -7 was observed only in the basal part of the meninges during the initiation period of primordium growth. These results suggest that a loss of Foxc1 function affects skull bone formation of the apical region and that Bmp expression in the meninges might influence the growth of the calvarial bone primordium.
    Congenital Anomalies 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital bony syngnathia, a rare but severe human birth defect, is characterized by bony fusion of the mandible to the maxilla. However, the genetic mechanisms underlying this birth defect are poorly understood, largely due to limitation of available animal models. Here we present evidence that transgenic expression of Bmp4 in neural crest cells causes a series of craniofacial malformations in mice, including a bony fusion between the maxilla and hypoplastic mandible, resembling the bony syngnathia syndrome in humans. In addition, the anterior portion of the palatal shelves emerged from the mandibular arch instead of the maxilla in the mutants. Gene expression assays showed an altered expression of several facial patterning genes, including Hand2, Dlx2, Msx1, Barx1, Foxc2 and Fgf8, in the maxillary and mandibular processes of the mutants, indicating mis-patterned cranial neural crest (CNC) derived cells in the facial region. However, despite of formation of cleft palate and ectopic cartilage, forced expression of a constitutively active form of BMP receptor-Ia (caBmprIa) in CNC lineage did not produce the syngnathia phenotype, suggesting a non-cell autonomous effect of the augmented BMP4 signaling. Our studies demonstrate that aberrant BMP4-mediated signaling in CNC cells leads to mis-patterned facial skeleton and congenital bony syngnathia, and suggest an implication of mutations in BMP signaling pathway in human bony syngnathia.
    Developmental Biology 04/2014; · 3.64 Impact Factor