Article

Expansion on Stromal Cells Preserves the Undifferentiated State of Human Hematopoietic Stem Cells Despite Compromised Reconstitution Ability

Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America.
PLoS ONE (Impact Factor: 3.53). 01/2013; 8(1):e53912. DOI: 10.1371/journal.pone.0053912
Source: PubMed

ABSTRACT Lack of HLA-matched hematopoietic stem cells (HSC) limits the number of patients with life-threatening blood disorders that can be treated by HSC transplantation. So far, insufficient understanding of the regulatory mechanisms governing human HSC has precluded the development of effective protocols for culturing HSC for therapeutic use and molecular studies. We defined a culture system using OP9M2 mesenchymal stem cell (MSC) stroma that protects human hematopoietic stem/progenitor cells (HSPC) from differentiation and apoptosis. In addition, it facilitates a dramatic expansion of multipotent progenitors that retain the immunophenotype (CD34+CD38-CD90+) characteristic of human HSPC and proliferative potential over several weeks in culture. In contrast, transplantable HSC could be maintained, but not significantly expanded, during 2-week culture. Temporal analysis of the transcriptome of the ex vivo expanded CD34+CD38-CD90+ cells documented remarkable stability of most transcriptional regulators known to govern the undifferentiated HSC state. Nevertheless, it revealed dynamic fluctuations in transcriptional programs that associate with HSC behavior and may compromise HSC function, such as dysregulation of PBX1 regulated genetic networks. This culture system serves now as a platform for modeling human multilineage hematopoietic stem/progenitor cell hierarchy and studying the complex regulation of HSC identity and function required for successful ex vivo expansion of transplantable HSC.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite progress in identifying the cellular composition of hematopoietic stem/progenitor cell (HSPC) niches, little is known about the molecular requirements of HSPC support. To address this issue, we used a panel of 6 recognized HSPC-­‐supportive stromal lines and less-­‐supportive counterparts originating from embryonic and adult hematopoietic sites. Through comprehensive transcriptomic meta-­‐analyses, we identified 481 mRNAs and 17 microRNAs organized in a modular network implicated in paracrine signaling. Further inclusion of 18 additional cell strains demonstrated that this mRNA subset was predictive of HSPC support. Our gene set contains most known HSPC regulators but also a number of novel ones, such as Pax9 and Ccdc80, as validated by functional studies in zebrafish embryos. In sum, our approach has identified the core molecular network required for HSPC support. These cues together with a searchable web resource will inform ongoing efforts to instruct HSPC ex vivo amplification and formation from pluripotent precursors.
    Cell Stem Cell 07/2014; 15(3). DOI:10.1016/j.stem.2014.06.005 · 22.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic stem cells (HSCs) sustain blood production through life and are of pivotal importance in regenerative medicine. Although HSC generation from pluripotent stem cells would resolve their shortage for clinical applications, this has not yet been achieved mainly due to the poor mechanistic understanding of their programing. Bone marrow HSCs are first created during embryogenesis in the dorsal aorta (DA) of the mid-gestation conceptus, from where they migrate to the fetal liver and, eventually, the bone marrow. It is currently accepted that HSCs emerge from specialised endothelium, the hemogenic endothelium, localised in the ventral wall of the DA through an evolutionarily conserved process called the endothelial to hematopoietic transition (EHT). However, EHT represents one of the last steps in HSC creation and an understanding of earlier events in the specification of their progenitors is required if we are to create them from naïve pluripotent cells. Due to their ready availability and external development, studies on zebrafish and Xenopus embryos have enormously facilitated our understanding of the early developmental processes leading to the programming of HSCs from nascent lateral plate mesoderm to hemogenic endothelium in the DA. The amenity of the Xenopus model to lineage tracing experiments has also contributed to the establishment of the distinct origins of embryonic (yolk sac) and adult (HSC) hematopoiesis, whilst the transparency of the zebrafish has allowed in vivo imaging of developing blood cells, particularly during and after the emergence of HSCs in the DA. Here, we discuss the key contributions of these model organisms to our understanding of developmental hematopoiesis.
    Experimental Hematology 06/2014; 42(8). DOI:10.1016/j.exphem.2014.06.001 · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called "stage 3" developmental intermediate minimally characterized by a CD34(-)CD117(+)CD94(-) immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that include interleukin-1 receptor (IL-1R1)-positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here, we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes the differentiation of tonsillar IL-22-producing IL-1R1(hi) human ILC3s to CD56(bright)CD94(+) interferon (IFN)-γ-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, we demonstrate the lineage plasticity of human ILCs by identifying AHR as a transcription factor that prevents IL-1R1(hi) ILC3s from differentiating into NK cells.