Chromatin adaptor Brd4 modulates E2 transcription activity and protein stability.

Simmons Comprehensive Cancer Center and the Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-8807, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2008; 284(5):2778-86. DOI: 10.1074/jbc.M805835200
Source: PubMed

ABSTRACT Brd4 is a chromatin adaptor containing tandem bromodomains binding to acetylated histone H3 and H4. Although Brd4 has been implicated in the transcriptional control of papillomavirus-encoded E2 protein, it is unclear how Brd4 regulates E2 function and whether the involvement of Brd4 in transactivation and transrepression is common to different types of E2 proteins. Using DNase I footprinting performed with in vitro reconstituted human papillomavirus (HPV) chromatin and nucleosome-free DNA templates, we found that Brd4 facilitates E2 binding to its cognate sequences in chromatin depending on bromodomains and the E2-interacting region of Brd4. Moreover, the coactivator and corepressor function of Brd4 requires at least one intact bromodomain and is mediated by its direct association with E2 proteins encoded by cancer-inducing high risk HPV-16 and HPV-18, wart-causing low risk HPV-11, and bovine papillomavirus type 1, in part through enhancing the protein stability of E2 that is normally degraded via the ubiquitin-dependent proteasome pathway. Our findings indicate that a chromatin adaptor can bridge and enhance the binding of a sequence-specific transcription factor to chromatin and further promote the stability of a labile transcription factor via direct protein-protein interaction.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
    Viruses 09/2014; 6(9):3584-3611. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The papillomavirus E2 protein is involved in the maintenance of persistent infection and known to bind either to cellular factors or directly to mitotic chromosomes in order to partition the viral genome into the daughter cells. However, how the HPV-16 E2 protein acts to facilitate partitioning of the viral genome remains unclear. In this study, we found that serine 243 of HPV-16 E2, located in the hinge region, is crucial for chromosome binding during mitosis. Bromodomain protein 4 (Brd4) has been identified as a cellular binding target through which the E2 protein of bovine papillomavirus type 1 (BPV-1) tethers the viral genome to mitotic chromosomes. Mutation analysis showed that, when the residue serine 243 was substituted by glutamic acid or aspartic acid, whose negative charges mimic the effect of constitutive phosphorylation, the protein still can interact with Brd4 and colocalize with Brd4 in condensed metaphase and anaphase chromosomes. However, substitution by the polar uncharged residues asparagine or glutamine abrogated Brd4 and mitotic chromosome binding. Moreover, following treatment with the inhibitor JQ1 to release Brd4 from the chromosomes, Brd4 and E2 formed punctate foci separate from the chromosomes, further supporting the hypothesis that the association of the HPV-16 E2 protein with the chromosomes is Brd4-dependent. In addition, the S243A E2 protein has a shorter half-life than the wild type, indicating that phosphorylation of the HPV-16 E2 protein at serine 243 also increases its half-life. Thus, phosphorylation of serine 243 in the hinge region of HPV-16 E2 is essential for interaction with Brd4 and required for host chromosome binding.
    PLoS ONE 10/2014; 9(10):e110882. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle.
    Viruses 08/2014; 6(8):3228-3249. · 3.28 Impact Factor