FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome.

Department of Clinical Genetics, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
Neurology (Impact Factor: 8.3). 12/2008; 72(3):240-5. DOI: 10.1212/01.wnl.0000338144.10967.2b
Source: PubMed

ABSTRACT The combination of early-onset, progressive parkinsonism with pyramidal tract signs has been known as pallido-pyramidal or parkinsonian-pyramidal syndrome since the first description by Davison in 1954. Very recently, a locus was mapped in a single family with an overlapping phenotype, and an FBXO7 gene mutation was nominated as the likely disease cause.
We performed clinical and genetic studies in two families with early-onset, progressive parkinsonism and pyramidal tract signs.
An FBXO7 homozygous truncating mutation (Arg498Stop) was found in an Italian family, while compound heterozygous mutations (a splice-site IVS7 + 1G/T mutation and a missense Thr22Met mutation) were present in a Dutch family. We also found evidence of expression of novel normal splice-variants of FBXO7. The phenotype associated with FBXO7 mutations consisted of early-onset, progressive parkinsonism and pyramidal tract signs, thereby matching clinically the pallido-pyramidal syndrome of Davison. The parkinsonism exhibits varying degrees of levodopa responsiveness in different patients.
We conclusively show that recessive FBXO7 mutations cause progressive neurodegeneration with extrapyramidal and pyramidal system involvement, delineating a novel genetically defined entity that we propose to designate as PARK15. Understanding how FBXO7 mutations cause disease will shed further light on the molecular mechanisms of neurodegeneration, with potential implications also for more common forms of parkinsonism, such as Parkinson disease and multiple system atrophy.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets.
    BioMed Research International 01/2014; 2014:371256. · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is characterized by progressive midbrain dopaminergic neuron degeneration and the formation of intracellular protein aggregates, referred to as Lewy bodies. F-box only protein 7 (FBXO7) gene mutations are closely associated with progression of the autosomal recessive form of familial PD. FBXO7 encodes a component of Skp1, cullin, F-box ubiquitin ligase complexes; however, its cellular targets, including substrates and regulators, are not yet clarified. To identify potential substrates of FBXO7, we performed a yeast two-hybrid screen of a human fetal brain library and identified neurotrophin receptor-interacting MAGE protein (NRAGE) as a novel FBXO7-binding partner. We found that FBXO7 interacts with NRAGE and mediates Lys-63-linked poly-ubiquitination of NRAGE in mammalian cells. FBXO7 overexpression accelerates formation of NRAGE-TAK1-TAB1 complexes, whereas FBXO7 knockdown correspondingly decreases complex formation. In addition, BMP4 stimulation enhances NRAGE ubiquitination through FBXO7 and facilitates endogenous NRAGE-TAK1-TAB1 complex formation. Furthermore, FBXO7 positively regulates formation of the BMP receptor-NRAGE-TAK1-TAB1 complex, and up-regulates NF-κB activity. Taken together, our results suggest that FBXO7 affects BMP4-mediated signaling through proteasome-independent ubiquitination of NRAGE and augments formation of downstream signaling components.
    Cellular and Molecular Life Sciences CMLS 06/2014; · 5.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the F-box only protein 7 gene (FBXO7), the substrate-specifying subunit of SCF E3 ubiquitin ligase complex, cause Parkinson's disease (PD)-15 (PARK15). To identify new variants, we sequenced FBXO7 cDNA in 80 Taiwanese early onset PD patients (age at onset ≤50) and only two known variants, Y52C (c.155A>G) and M115I (c.345G>A), were found. To assess the association of Y52C and M115I with the risk of PD, we conducted a case-control study in a cohort of PD and ethnically matched controls. There was a nominal difference in the Y52C G allele frequency between PD and controls (p = 0.045). After combining data from China [1], significant difference in the Y52C G allele frequency between PD and controls (p = 0.012) and significant association of G allele with decreased PD risk (p = 0.017) can be demonstrated. Upon expressing EGFP-tagged Cys52 FBXO7 in cells, a significantly reduced rate of FBXO7 protein decay was observed when compared with cells expressing Tyr52 FBXO7. In silico modeling of Cys52 exhibited a more stable feature than Tyr52. In cells expressing Cys52 FBXO7, the level of TNF receptor-associated factor 2 (TRAF2) was significantly reduced. Moreover, Cys52 FBXO7 showed stronger interaction with TRAF2 and promoted TRAF2 ubiquitination, which may be responsible for the reduced TRAF2 expression in Cys52 cells. After induced differentiation, SH-SY5Y cells expressing Cys52 FBXO7 displayed increased neuronal outgrowth. We therefore hypothesize that Cys52 variant of FBXO7 may contribute to reduced PD susceptibility in Chinese.
    PLoS ONE 07/2014; 9(7):e101392. · 3.53 Impact Factor