Article

The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer

Division of Surgical Oncology, Department of Surgery, University of Texas Southwestern Medical School, Dallas, TX 75390-8593, USA.
BMC Cancer (Impact Factor: 3.32). 12/2008; 8:352. DOI: 10.1186/1471-2407-8-352
Source: PubMed

ABSTRACT Pancreatic cancer continues to have a 5-year survival of less than 5%. Therefore, more effective therapies are necessary to improve prognosis in this disease. Angiogenesis is required for tumor growth, and subsequently, mediators of angiogenesis are attractive targets for therapy. Vascular endothelial growth factor (VEGF) is a well-characterized mediator of tumor angiogenesis that functions primarily by binding and activating VEGF receptor 2 (VEGFR2). In this study, we evaluate the use of CT-322, a novel biologic (Adnectin). This small protein is based on a human fibronectin domain and has beneficial properties in that it is fully human, stable, and is produced in bacteria. CT-322 binds to and inhibits activation of VEGFR2.
The efficacy of CT-322 was evaluated in vivo using two orthotopic pancreatic tumor models. The first model was a human tumor xenograft where MiaPaCa-2 cells were injected into the tail of the pancreas of nude mice. The second model was a syngeneic tumor using Pan02 cells injected into pancreas of C57BL/6J mice. In both models, therapy was initiated once primary tumors were established. Mice bearing MiaPaCa-2 tumors were treated with vehicle or CT-322 alone. Gemcitabine alone or in combination with CT-322 was added to the treatment regimen of mice bearing Pan02 tumors. Therapy was given twice a week for six weeks, after which the animals were sacrificed and evaluated (grossly and histologically) for primary and metastatic tumor burden. Primary tumors were also evaluated by immunohistochemistry for the level of apoptosis (TUNEL), microvessel density (MECA-32), and VEGF-activated blood vessels (Gv39M).
Treatment with CT-322 was effective at preventing pancreatic tumor growth and metastasis in orthotopic xenograft and syngeneic models of pancreatic cancer. Additionally, CT-322 treatment increased apoptosis, reduced microvessel density and reduced the number of VEGF-activated blood vessels in tumors. Finally, CT-322, in combination with gemcitabine was safe and effective at controlling the growth of syngeneic pancreatic tumors in immunocompetent mice.
We conclude that CT-322 is an effective anti-VEGFR2 agent and that further investigation of CT-322 for the treatment of pancreatic cancer is warranted.

0 Followers
 · 
106 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biotherapeutics are attractive anti-cancer agents due to their high specificity and limited toxicity compared to conventional small molecules. Antibodies are widely used in cancer therapy, either directly or conjugated to a cytotoxic payload. Peptide therapies, though not as prevalent, have been utilized in hormonal therapy and imaging. The limitations associated with unmodified forms of both types of biotherapeutics have led to the design and development of novel structures, which incorporate key features and structures that have improved the molecules' abilities to bind to tumor targets, avoid degradation, and exhibit favorable pharmacokinetics. In this review, we highlight the current status of monoclonal antibodies and peptides, and provide a perspective on the future of biotherapeutics using novel constructs. © 2015, The American College of Clinical Pharmacology.
    The Journal of Clinical Pharmacology 03/2015; 55 Suppl 3(S3):S4-S20. DOI:10.1002/jcph.407 · 2.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1 is a scaffold protein on the cell membrane. As the main component of caveolae, caveolin-1 is involved in many biological processes that include substance uptake and transmembrane signaling. Many of these processes and thus caveolin-1 contribute to cell transformation, tumorigenesis, and metastasis. Of particular interest are the dual rolesof tumor suppressor and oncogene that caveolin-1 appear to play in different malignancies, including pancreatic cancer. Therefore, analyzing caveolin-1 regulators and understanding their mechanisms of actionis key to identifying novel diagnostic and therapeutic tools for pancreatic cancer. This review details the mechanisms of action of caveolin-1 regulators and the potential significance for pancreatic cancer treatment.
    Asian Pacific journal of cancer prevention: APJCP 08/2013; 14(8):4501-4507. DOI:10.7314/APJCP.2013.14.8.4501 · 1.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alternative scaffold molecules represent a class of proteins important to the study of protein design and mechanisms of protein-protein interactions, as well as for the development of therapeutic proteins. Here, we describe the generation of a library built upon the framework of a consensus FN3 domain sequence resulting in binding proteins we call Centyrins. This new library employs diversified positions within the C-strand, CD-loop, F-strand and FG-loop of the FN3 domain. CIS display was used to select high-affinity Centyrin variants against three targets; c-MET, murine IL-17A and rat TNFα and scanning mutagenesis studies were used to define the positions of the library most important for target binding. Contributions from both the strand and loop positions were noted, although the pattern was different for each molecule. In addition, an affinity maturation scheme is described that resulted in a significant improvement in the affinity of one selected Centyrin variant. Together, this work provides important data contributing to our understanding of potential FN3 binding interfaces and a new tool for generating high-affinity scaffold molecules.
    Protein Engineering Design and Selection 04/2014; 27(10). DOI:10.1093/protein/gzu016 · 2.32 Impact Factor