Article

Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells.

Department of Hematology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
Nature Immunology (Impact Factor: 26.2). 12/2008; 10(1):66-74. DOI: 10.1038/ni.1668
Source: PubMed

ABSTRACT The human body contains over 500 individual lymph nodes, yet the biology of their formation is poorly understood. Here we identify human lymphoid tissue-inducer cells (LTi cells) as lineage-negative RORC+ CD127+ cells with the functional ability to interact with mesenchymal cells through lymphotoxin and tumor necrosis factor. Human LTi cells were committed natural killer (NK) cell precursors that produced interleukin 17 (IL-17) and IL-22. In vitro, LTi cells gave rise to RORC+ CD127+ NK cells that retained the ability to produce IL-17 and IL-22. Postnatally, similar populations of LTi cell-like cells and RORC+ CD127+ NK cells were present in tonsils, and both secreted IL-17 and IL-22 but no interferon-gamma. Our data indicate that lymph node organogenesis is controlled by an NK cell precursor population with adaptive immune features and demonstrate a previously unappreciated link between the innate and adaptive immune systems.

1 Bookmark
 · 
211 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a common pulmonary disease with several different forms. The most studied form of asthma is the allergic form, which is mainly related to the function of Th2 cells and their production of cytokines (IL-4, IL-5, and IL-13) in association with allergen sensitization and adaptive immunity. Recently, there have been many advances in understanding non-allergic asthma, which seems to be related to environmental factors such as air pollution, infection, or even obesity. Cells of the innate immune system, including macrophages, neutrophils, and natural killer T cells as well as the newly described innate lymphoid cells, are effective producers of a variety of cytokines and seem to play important roles in the development of non-allergic asthma. In this review, we focus on recent findings regarding innate lymphoid cells and their roles in asthma.
    Immune Network 08/2014; 14(4):171-81.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα-/- mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα-/- mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A-/-IL-2Rα-/- or IFN-γ-/-IL-2Rα-/- to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα-/- mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ-/- IL-2Rα-/- mice, compared to single knock-out IL-2Rα-/- mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A-/-IL-2Rα-/- mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.
    PLoS ONE 01/2014; 9(8):e105351. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disorder that affects thousands of people around the world. These diseases are characterized by exacerbated uncontrolled intestinal inflammation that leads to poor quality of life in affected patients. Although the exact cause of IBD still remains unknown, compelling evidence suggests that the interplay among immune deregulation, environmental factors, and genetic polymorphisms contributes to the multifactorial nature of the disease. Therefore, in this review we present classical and novel findings regarding IBD etiopathogenesis. Considering the genetic causes of the diseases, alterations in about 100 genes or allelic variants, most of them in components of the immune system, have been related to IBD susceptibility. Dysbiosis of the intestinal microbiota also plays a role in the initiation or perpetuation of gut inflammation, which develops under altered or impaired immune responses. In this context, unbalanced innate and especially adaptive immunity has been considered one of the major contributing factors to IBD development, with the involvement of the Th1, Th2, and Th17 effector population in addition to impaired regulatory responses in CD or UC. Finally, an understanding of the interplay among pathogenic triggers of IBD will improve knowledge about the immunological mechanisms of gut inflammation, thus providing novel tools for IBD control.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 07/2014; · 1.08 Impact Factor