Article

Pulsed contractions of an actin-myosin network drive apical constriction.

Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
Nature (Impact Factor: 42.35). 12/2008; 457(7228):495-9. DOI: 10.1038/nature07522
Source: PubMed

ABSTRACT Apical constriction facilitates epithelial sheet bending and invagination during morphogenesis. Apical constriction is conventionally thought to be driven by the continuous purse-string-like contraction of a circumferential actin and non-muscle myosin-II (myosin) belt underlying adherens junctions. However, it is unclear whether other force-generating mechanisms can drive this process. Here we show, with the use of real-time imaging and quantitative image analysis of Drosophila gastrulation, that the apical constriction of ventral furrow cells is pulsed. Repeated constrictions, which are asynchronous between neighbouring cells, are interrupted by pauses in which the constricted state of the cell apex is maintained. In contrast to the purse-string model, constriction pulses are powered by actin-myosin network contractions that occur at the medial apical cortex and pull discrete adherens junction sites inwards. The transcription factors Twist and Snail differentially regulate pulsed constriction. Expression of snail initiates actin-myosin network contractions, whereas expression of twist stabilizes the constricted state of the cell apex. Our results suggest a new model for apical constriction in which a cortical actin-myosin cytoskeleton functions as a developmentally controlled subcellular ratchet to reduce apical area incrementally.

0 Followers
 · 
211 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological tissues must generate forces to shape organs and achieve proper development. Such forces often result from the contraction of an apical acto-myosin meshwork. Here we describe an alternative mechanism for tissue contraction, based on individual cell volume change. We show that during Drosophila dorsal closure (DC), a wound healing-related process, the contraction of the amnioserosa (AS) is associated with a major reduction of the volume of its cells, triggered by caspase activation at the onset of the apoptotic program of AS cells. Cell volume decrease results in a contractile force that promotes tissue shrinkage. Estimating mechanical tensions with laser dissection and using 3D biophysical modeling, we show that the cell volume decrease acts together with the contraction of the actin cable surrounding the tissue to govern DC kinetics. Our study identifies a mechanism by which tissues generate forces and movements by modulating individual cell volume during development. Copyright © 2015 Elsevier Inc. All rights reserved.
    Developmental Cell 05/2015; DOI:10.1016/j.devcel.2015.03.016 · 10.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elongation and invagination of epithelial tissues are fundamental developmental processes that contribute to the morphogenesis of embryonic and adult structures and are dependent on coordinated remodeling of cell–cell contacts. The morphogenesis of Drosophila leg imaginal discs depends on extensive remodeling of cell contacts and thus provides a useful system with which to investigate the underlying mechanisms. The small Rho GTPase regulator RhoGAP68F has been previously implicated in leg morphogenesis. It consists of on an N-terminal Sec14 domain and a C-terminal GAP domain. Here we examined the molecular function and role of RhoGAP68F in epithelial remodeling. We find that depletion of RhoGAP68F impairs epithelial remodeling from a pseudostratified to simple, while overexpression of RhoGAP68F causes tears of lateral cell–cell contacts and thus impairs epithelial integrity. We show that the RhoGAP68F protein localizes to Rab4 recycling endosomes and forms a complex with the Rab4 protein. The Sec14 domain is sufficient for localizing to Rab4 endosomes, while the activity of the GAP domain is dispensable. RhoGAP68F, in turn, inhibits the scission and movement of Rab4 endosomes involved in transport the adhesion proteins Fasciclin3 and E-cadherin back to cell–cell contacts. Expression of RhoGAP68F is upregulated during prepupal development suggesting that RhoGAP68F decreases the transport of key adhesion proteins to the cell surface during this developmental stage to decrease the strength of adhesive cell–cell contacts and thereby facilitate epithelial remodeling and leg morphogenesis.
    Developmental Biology 01/2015; 399(2). DOI:10.1016/j.ydbio.2015.01.004 · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell-generated forces produce a variety of tissue movements and tissue shape changes. The cytoskeletal elements that underlie these dynamics act at cell-cell and cell-ECM contacts to apply local forces on adhesive structures. In epithelia, force imbalance at cell contacts induces cell shape changes, such as apical constriction or polarized junction remodeling, driving tissue morphogenesis. The dynamics of these processes are well-characterized; however, the mechanical basis of cell shape changes is largely unknown because of a lack of mechanical measurements in vivo. We have developed an approach combining optical tweezers with light-sheet microscopy to probe the mechanical properties of epithelial cell junctions in the early Drosophila embryo. We show that optical trapping can efficiently deform cell-cell interfaces and measure tension at cell junctions, which is on the order of 100 pN. We show that tension at cell junctions equilibrates over a few seconds, a short timescale compared with the contractile events that drive morphogenetic movements. We also show that tension increases along cell interfaces during early tissue morphogenesis and becomes anisotropic as cells intercalate during germ-band extension. By performing pull-and-release experiments, we identify time-dependent properties of junctional mechanics consistent with a simple viscoelastic model. Integrating this constitutive law into a tissue-scale model, we predict quantitatively how local deformations propagate throughout the tissue.
    Proceedings of the National Academy of Sciences 01/2015; 112(5). DOI:10.1073/pnas.1418732112 · 9.81 Impact Factor