Function and regulation of class I ribonucleotide reductase-encoding genes in mycobacteria.

MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg 2000, South Africa.
Journal of bacteriology (Impact Factor: 2.69). 12/2008; 191(3):985-95. DOI: 10.1128/JB.01409-08
Source: PubMed

ABSTRACT Ribonucleotide reductases (RNRs) are crucial to all living cells, since they provide deoxyribonucleotides (dNTPs) for DNA synthesis and repair. In Mycobacterium tuberculosis, a class Ib RNR comprising nrdE- and nrdF2-encoded subunits is essential for growth in vitro. Interestingly, the genome of this obligate human pathogen also contains the nrdF1 (Rv1981c) and nrdB (Rv0233) genes, encoding an alternate class Ib RNR small (R2) subunit and a putative class Ic RNR R2 subunit, respectively. However, the role(s) of these subunits in dNTP provision during M. tuberculosis pathogenesis is unknown. In this study, we demonstrate that nrdF1 and nrdB are dispensable for the growth and survival of M. tuberculosis after exposure to various stresses in vitro and, further, that neither gene is required for growth and survival in mice. These observations argue against a specialist role for the alternate R2 subunits under the conditions tested. Through the construction of nrdR-deficient mutants of M. tuberculosis and Mycobacterium smegmatis, we establish that the genes encoding the essential class Ib RNR subunits are specifically regulated by an NrdR-type repressor. Moreover, a strain of M. smegmatis mc(2)155 lacking the 56-kb chromosomal region, which includes duplicates of nrdHIE and nrdF2, and a mutant retaining only one copy of nrdF2 are shown to be hypersensitive to the class I RNR inhibitor hydroxyurea as a result of depleted levels of the target. Together, our observations identify a potential vulnerability in dNTP provision in mycobacteria and thereby offer a compelling rationale for pursuing the class Ib RNR as a target for drug discovery.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.
    Frontiers in Cellular and Infection Microbiology 04/2014; 4:52. DOI:10.3389/fcimb.2014.00052 · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different methods have been developed to infer regulatory networks from heterogeneous omics datasets and to construct co-expression networks. Each algorithm produces different networks and efforts have been devoted to automatically integrate them into consensus sets. However each separate set has an intrinsic value that is diluted and partly lost when building a consensus network. Here we present a methodology to generate co-expression networks and, instead of a consensus network, we propose an integration framework where the different networks are kept and analysed with additional tools to efficiently combine the information extracted from each network.
    BMC Systems Biology 09/2014; 8(1):111. DOI:10.1186/s12918-014-0111-5 · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ribonucleotide reductase (RNR) supplies cellular deoxyribonucleotide triphosphates (dNTP) pools by converting ribonucleotides to the corresponding deoxy forms using radical-based chemistry. Eukaryotic RNR comprises α and β subunits: α contains the catalytic and allosteric sites; β houses a diferric-tyrosyl radical cofactor (Fe(III) 2-Y•) that is required to initiates nucleotide reduction in α. Cells have evolved multi-layered mechanisms to regulate RNR level and activity in order to maintain the adequate sizes and ratios of their dNTP pools to ensure high-fidelity DNA replication and repair. The central role of RNR in nucleotide metabolism also makes it a proven target of chemotherapeutics. In this review, we discuss recent progress in understanding the function and regulation of eukaryotic RNRs, with a focus on studies revealing the cellular machineries involved in RNR metallocofactor biosynthesis and its implication in RNR-targeting therapeutics.
    01/2014; 9(2):104-113. DOI:10.1007/s11515-014-1302-6


1 Download
Available from