Pulsed spectrometer for nuclear quadrupole resonance for remote detection of nitrogen in explosives

Kaliningrad State University, Królewiec, Kaliningrad, Russia
Review of Scientific Instruments (Impact Factor: 1.58). 03/2000; 71(4):1656-1659. DOI: 10.1063/1.1150514

ABSTRACT We describe a pulsed spectrometer for detection of nuclear quadrupole resonance on the nuclei of nitrogen N-14 with fast Fourier transform. The use of a multipulse sequence, four channel system for data registration and processing permits detection of the nuclear quadrupole resonance (NQR) signal in the presence of strong interference and the piezo effect. Using this spectrometer we registered the NQR signal from an explosive sample of 150 g (92% RDX) at a distance of 22 cm, and the time of detection was 81 s. © 2000 American Institute of Physics.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Compared with nitroaromatic explosive detection, nitrate ester explosive detection has not received considerable attention possibly due to the absence of an aromatic ring and their difficulty in being detected. An eight triphenylamino-pyrenyl substituted POSS (P8PT) was designed as a sensory material. POSS was chosen as the skeleton due to its nano structure, multiple reactive sites, structural similarity with nitrate esters and high thermal stability, which will contribute to large surface area induced high sensitivity, tunable sensory units number, stronger interaction force with nitrate esters and high stability. For comparison, triphenylamino-pyrene (Py-TPA) (without POSS), one and three Py-TPA substituted POSS were also synthesized and characterized. Their chemical structures, photophysical and electrochemical properties show that P8PT has a 3-D symmetrical spatial conformation, higher molar extinction coefficient, higher area-to-volume ratio, multiple exciton transfer path, and matched energy level with nitrate ester explosives, which will all contribute to highly efficient sensing performance and efficient selectivity for the detection of nitrate ester explosives such as nitroglycerin (NG). The fluorescence of the P8PT film is 63% quenched upon exposure to a saturated vapor of NG for 50 s and 92% quenched for 300 s at room temperature due to photoinduced electron transfer between the probe and NG. These results reveal that P8PT is suitable for preparing a highly sensitive and efficient thin-film device for detecting nitrate esters.
    02/2015; 3(9). DOI:10.1039/C4TA05704J
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World War II. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern–Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid–solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
    Chemistry - A European Journal 10/2014; 20(42). DOI:10.1002/chem.201403345 · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of a portable and easy-to-use device for the detection of explosives with high sensitivity and selectivity is in high demand for homeland security and public safety. In this study, we demonstrate miniaturized devices depending on the upconversion ratiometric luminescent probe for point-of-care (POC) assay of explosives with the naked-eye. When the PEI-coated upconversion nanoparticles (UCNPs) selectively bonded to 2,4,6-trinitrotoluene (TNT) explosives by the formation of Meisenheimer complex, the formed of UCNP-Meisenheimer complexes show turned visible multicolor upconversion luminescence (UCL) on account of TNT-modulating Förster resonance energy transfer (FRET) process under near-infrared (NIR) excitation. With UCL emission at 808 nm as internal standard and ratiometric UCL at 477 nm to that at 808 nm (I477/I808) as output signal, the probe can simultaneously meet the accuracy for TNT explosives quatitative analysis. In addition, this easy-to-use visual technique provides a powerful tool for convenient POC assay of rapid explosives identification.
    Analytical Chemistry 09/2014; 86(20). DOI:10.1021/ac5032308 · 5.83 Impact Factor