Jumping translocations in hematological malignancies: a cytogenetic study of five cases.

Laboratory of Cytogenetics, NCSR "Demokritos" Athens, Greece.
Cancer genetics and cytogenetics (Impact Factor: 1.54). 01/2009; 187(2):85-94. DOI: 10.1016/j.cancergencyto.2008.07.010
Source: PubMed

ABSTRACT Jumping translocations (JT) are rare cytogenetic aberrations in hematological malignancies that include unbalanced translocations involving a donor chromosome arm or chromosome segment that has fused to two or more different recipient chromosomes in different cell lines. We report five cases associated with different hematologic disorders and JT to contribute to the investigation of the origin, pathogenesis, and clinical significance of JT. These cases involve JT of 1q in a case of acute myeloblastic leukemia (AML)-M1, a case of Burkitt lymphoma, and a case of BCR/ABL-positive acute lymphoblastic leukemia, as well as a JT of 13q in a case of AML-M5, and a JT of 11q segment in a case of undifferentiated leukemia. To our knowledge, with regard to hematologic malignancies, this study presents the first case of JT associated with AML-M1, the first case of JT involving 13q as a donor chromosome, and the first report of JT involving a segment of 11q containing two copies of the MLL gene, jumping on to two recipient chromosomes in each cell line and resulting in six copies of the MLL gene. Our investigation suggests that JT may not contribute to the pathogenesis but rather to the progression of the disease, and it demonstrates that chromosome band 1q10 as a breakpoint of the donor chromosome 1q is also implicated in AML, not only in multiple myeloma as it has been known until now.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rearrangements affecting the MLL gene in hematological malignancies are associated with poor prognosis. Most often they are reciprocal translocations and more rarely complex forms involving at least 3 chromosomes. We describe an unusual case with cutaneous leukemic infiltrates that waxed and waned until progression to acute myeloid leukemia, AML-M5. The leukemic cells harbored a novel apparent 3-way translocation t(6;19;11)(p22.2;p13.1;q23.3). We utilized advanced molecular cytogenetic methods including 24-color karyotyping, high-resolution array comparative genomic hybridization (aCGH) and DNA sequencing to characterize the genomic complement in the leukemic cells from aspirated bone marrow cells at AML diagnosis. Karyotyping showed 47,XY,t(6;19;11)(p22;p13;q23),+der(6)t(6;11)(p22;q23)[17]/48,sl,+8[3]/48,sl,+8,der(12)t(1;12)(q11;p13)[3]/ 48,sdl,der(Y)t(Y;1)(q12;q11),+8[7] conferring MLL-ELL fusion. Oligo-aCGH analysis confirmed gains of 6p22qter and 11q23.3qter involving the CMAHP and MLL genes, respectively. DNA sequencing disclosed an additional breakpoint at 6p24.3 (at RREB1 gene). Retrospective fluorescence in situ hybridization revealed presence of the MLL-involving rearrangement in the initial stages of disease before clear morphological signs of bone marrow involvement. The patient responded well to therapy and remains in remission >6 years from diagnosis. This apparent 3-way translocation is remarkable because of its rarity and presentation with myeloid sarcoma, and may, as more cases are characterized, further our understanding onto how such complex translocations contribute to promote leukemogenesis and respond to therapy.
    Cytogenetic and Genome Research 05/2013; · 1.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An infant presented with fever and purulent discharge from the left ear, proptosis of the right eye, and hepatosplenomegaly. She was diagnosed with acute monoblastic leukemia on morphological and flowcytometric analysis of the bone marrow. Karyotyping showed a jumping translocation (JT) involving the long arm of chromosome 1 as the sole cytogenetic abnormality in 29 metaphases. The patient died within 2 months of diagnosis. The presence of JT in a de novo infant AML as a sole cytogenetic abnormality indicates its possible role in leukemogenesis unlike previous reports that have implicated its role in tumor progression only. Pediatr Blood Cancer © 2013 Wiley Periodicals, Inc.
    Pediatric Blood & Cancer 09/2013; · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal translocations are acquired genetic rearrangements in human cancers. Jumping translocations are rare nonreciprocal rearrangements involving the same donor chromosome segment translocated to two or more recipient chromosomes. In this report, we describe a patient with Burkitt lymphoma/leukemia (BL) and a complex karyotype, including t(2;8)(p12;q24), copy-neutral loss of heterozygosity at 17p13.1–p13.3 and 19q13.1–q13.2, trisomy 20 and two uncommon chromosomal aberrations. The first one was a complex rearrangement of chromosome 15 (probably the consequence of chromothripsis), masked by an apparently balanced reciprocal translocation t(11;15)(p11.2;q21). The second one was a special type of unbalanced “vice versa” jumping translocation, which involved the same acceptor chromosome arm (13q) and various donor chromosome segments. It is unclear, whether both untypical rearrangements are consequence of the TP53 alteration or assumed chromothripsis influenced the development of the jumping-like translocation. However, the presence of the t(11;15)(p11.2;q21) translocation in all pathological cells suggests that it occurred in the early stage of the disease, whereas the jumping-like translocation, as an additional change, subsequently accelerated the progression of the disease.
    Cancer Genetics 05/2014; · 2.42 Impact Factor


Available from
May 23, 2014