A microfluidic dual capillary probe to collect messenger RNA from adherent cells and spheroids

Graduate School of Environmental Studies, Tohoku University, Aobe 6-6-11-604, Sendai 980-8579, Japan.
Analytical Biochemistry (Impact Factor: 2.31). 12/2008; 385(1):138-42. DOI: 10.1016/j.ab.2008.10.039
Source: PubMed

ABSTRACT Collection of bioanalytes from single cells is still a challenging technology despite the recent progress in many integrated microfluidic devices. A microfluidic dual capillary probe was prepared from a theta (theta)-shaped glass capillary to analyze messenger RNA (mRNA) from adherent cells and spheroids. The cell lysis buffer solution was introduced from the injection aperture, and the cell-lysed solution from the aspiration aperture was collected for further mRNA analysis based on reverse transcription real-time PCR. The cell lysis buffer can be introduced at any targeted cells and never spilled out of the targeted area by using the microfluidic dual capillary probe because laminar flow was locally formed near the probe under the optimized injection/aspiration flow rates. This method realizes the sensitivity of mRNA at the single cell level and the identification of the cell types on the basis of the relative gene expression profiles.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized “chip-to-world” and “chip-to-platform” interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.
    Review of Scientific Instruments 03/2014; 85(3):034301-034301-9. DOI:10.1063/1.4866976 · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A microscale vertical fluidic cell system has been implemented, based on a simple theta pipet pulled to a sharp point (ca. 10-20 µm diameter for the studies herein) and positioned with a high degree of control on a surface. The dual channel arrangement allows an electric field to be generated between an electrode in each compartment of the pipet that can be used to control the electro-migration of charged species between the two compartments, across a thin liquid meniscus in contact with the substrate of interest. By visualizing the interfacial region using laser scanning confocal microscopy, the adsorption of fluorescently-labeled materials on surfaces is monitored quantitatively in real time, exemplified through studies of the adsorption of anionic microparticles (1.1 µm diameter) on positively and negatively charged substrate surfaces of poly-L-lysine (PLL) and poly-L-glutamic acid (PGA), respectively, on glass. These studies highlight significant electrostatic effects on adsorption rates and also that the adsorption of these particles is dominated by the three phase meniscus/solid/air boundary. The technique is easily modified to the case of a submerged substrate, resulting in a much larger deposition area. Finite element method modeling is used to calculate local electric field strengths that are used to understand surface deposition patterns. To demonstrate the applicability of the technique to live biological substrates, the delivery of fluorescent particles directly to the surface of a single root hair cell of Zea mays is demonstrated. The mobile pipet allows deposition to be directed to specific regions of the cell, allowing discrete sites to be labeled with particles. Finally, the technique is used to study the uptake of fluorescent polymer molecules to single root hair cells, with quantitative analysis of the adsorption rates of vinyl-sulfonic acid co-polymers, with varying rhodamine B content.
    Langmuir 07/2014; 30(33). DOI:10.1021/la5020412 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We devised, implemented, and tested a new concept for efficient local surface chemistry that we call hierarchical hydrodynamic flow confinement (hierarchical HFC). This concept leverages the hydrodynamic shaping of multiple layers of liquid to address challenges inherent to microscale surface chemistry, such as minimal dilution, economical consumption of reagent, and fast liquid switching. We illustrate two modes of hierarchical HFC - nested and pinched - by locally denaturing and recovering a 26 bp DNA with as little as 2% dilution and by efficiently patterning an antibody on a surface, with 5 μm resolution and a 100-fold decrease of reagent consumption compared to microcontact printing. In addition, valve-less switching between nL volumes of liquids was achieved within 20 ms. We believe hierarchical HFC will have broad utility for chemistry on surfaces at the microscale.
    Langmuir 03/2014; 30(12). DOI:10.1021/la500875m · 4.38 Impact Factor