Posture, dynamic stability, and voluntary movement.

UFR-STAPS, université Paris-Sud-11, rue Langevin, 91405 Orsay, France.
Neurophysiologie Clinique/Clinical Neurophysiology (Impact Factor: 2.55). 01/2009; 38(6):345-62. DOI: 10.1016/j.neucli.2008.10.001
Source: PubMed

ABSTRACT This paper addresses the question of why voluntary movement, which induces a perturbation to balance, is possible without falling down. It proceeds from a joint biomechanical and physiological approach, and consists of three parts. The first one introduces some basic concepts that constitute a theoretical framework for experimental studies. The second part considers the various categories of "postural adjustments" (PAs) and presents major data on "anticipatory postural adjustments" (APA). The last part explores the concept of "posturokinetic capacity" (PKC) and its possible applications.

  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND & OBJECTIVE: This study was executed to find out correlation between postural alignment in sitting measured through photogrammetry and postural control in sitting following stroke. METHODS: A cross-sectional study with convenient sampling consisting of 45 subjects with acute and sub-acute stroke. Postural alignment in sitting was measured through photogrammetry and relevant angles were obtained through software MB Ruler (version 5.0). Seated postural control was measured through Function in Sitting Test (FIST). Correlation was obtained using Spearman's Rank Correlation co-efficient in SPSS software (version 17.0). RESULTS: Moderate positive correlation (r = 0.385; p < 0.01) was found between angle of lordosis and angle between acromion, lateral epicondyle and point between radius and ulna. Strong negative correlation (r = −0.435; p < 0.01) was found between cranio-vertebral angle and kyphosis. FIST showed moderate positive correlation (r = 0.3446; p < 0.05) with cranio-vertebral angle and strong positive correlation (r = 0.4336; p < 0.01) with Brunnstrom's stage of recovery in upper extremity. CONCLUSION: Degree of forward head posture in sitting correlates directly with seated postural control and inversely with degree of kyphosis in sitting post-stroke. Postural control in sitting post-stroke is directly related with Brunnstrom's stage of recovery in affected upper extremity in sitting.
    Neurorehabilitation 06/2014; 35:181-190. · 1.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coupling stability during cyclic arm movements in the horizontal (transverse) plane is lower in ISO- than in ANTI-directional coupling. We proposed that such impairment arises from the interference exerted in ISO by the anticipatory postural adjustments (APAs) linked to the primary movements. To evaluate if a link between coupling stability and postural adjustments also exist for arm movements with different postural requirements, we focused on arm(s) flexion-extension in the parasagittal plane and started by analysing the APAs distribution in arm, trunk and leg muscles. Fast flexion and extension of the right arm elicited APAs in the left anterior and posterior deltoid that replicated the excitation-inhibition of the homologous prime movers; this pattern would favour ISO and contrast ANTI-coupled movements. Instead, in the left latissimus dorsi, APAs were opposite to the voluntary actions in the right latissimus dorsi, thus favouring ANTI coupling. Symmetrical APAs were also elicited in right and left erector spinae (RES, LES) and asymmetrical APAs in Ischiocruralis (RIC, LIC), while an antero-posterior force (Fy) and a moment about the vertical axis (Tz) were discharged to the ground. When fast discrete movements were ISO-coupled, APAs were symmetrical in trunk (RES, LES) and leg (RIC, LIC) muscles and a large Fy but no Tz was generated. In ANTI coupling, APAs in RES and LES remained symmetrical, whereas they became antisymmetrical in RIC and LIC. A large Tz and a small Fy were recorded. In conclusion, during parasagittal movements, APAs in are elicited in both ISO and ANTI coupling, at variance with horizontal movements where they are only present in ISO. This would suggest that the difference in coupling stability between the two modes is smaller (or even reversed) in parasagittal with respect to horizontal arm movements.
    Experimental Brain Research 06/2013; · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When coupling cyclic adduction-abduction movements of the arms in the transverse (horizontal) plane, isodirectional (ISO) coupling is less stable than antidirectional (ANTI) coupling. We proposed that such deficiency stems from the disturbing action that anticipatory postural adjustments exert on ISO coupling. To ascertain if postural adjustments differentiate ISO versus ANTI coupling coordination in other types of cyclic arm movements, we examined flexion-extension oscillations in the parasagittal plane. Oscillations of the right arm alone elicited cyclic Postural Adjustments (PAs) in the left Anterior Deltoid and Posterior Deltoid, which replicated the excitation-inhibition pattern of the prime movers right Anterior Deltoid, right Posterior Deltoid. Cyclic PAs also developed symmetrically in Erector Spinae (RES and LES) and in phase opposition in Ischiocruralis (RIC and LIC), so as to discharge to the ground both an anteroposterior force, Fy, and a moment about the vertical axis, Tz. Oscillations of both arms in ISO coupling induced symmetric PAs in both ES and IC muscles, thus generating a large Fy but no Tz. In ANTI coupling, PAs in RES and LES remained symmetric but smaller in size, while PAs in RIC and LIC were large and opposite in phase, resulting in a large Tz and small Fy. Altogether, PAs would thus favour ISO and hamper ANTI parasagittal movements because (1) in the motor pathways to the prime movers of either arm, a convergence would occur between the voluntary commands and the commands for PAs linked to the movement of the other arm, the two commands having the same sign (excitatory or inhibitory) during ISO and an opposite sign during ANTI; (2) the postural effort of trunk and leg muscles would be higher for generating Tz in ANTI than Fy in ISO. These predictions fit with the finding that coupling stability was lower in ANTI than in ISO, i.e., opposite to horizontal movements. In conclusion, in both parasagittal and horizontal arm movements, the less coordinated coupling mode was the one constrained by postural adjustments through the two above mechanisms.
    Experimental Brain Research 06/2013; · 2.22 Impact Factor