Inhibition of PAX3 by TGF-beta modulates melanocyte viability.

Department of Medical Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
Molecular cell (Impact Factor: 14.46). 12/2008; 32(4):554-63. DOI: 10.1016/j.molcel.2008.11.002
Source: PubMed

ABSTRACT The protein encoded by paired-box homeotic gene 3 (PAX3) is a key regulator of the microphthalmia-associated transcription factor (Mitf) in the melanocyte lineage. Here, we show that PAX3 expression in skin is directly inhibited by TGF-beta/Smads. UV irradiation represses TGF-beta in keratinocytes, and the repression of TGF-beta/Smads upregulates PAX3 in melanocytes, which is associated with a UV-induced melanogenic response and consequent pigmentation. Furthermore, the TGF-beta-PAX3 signaling pathway interacts with the p53-POMC/MSH-MC1R signaling pathway, and both are crucial in melanogenesis. The activation of p53-POMC/MSH-MC1R signaling is required for the UV-induced melanogenic response because PAX3 functions in synergy with SOX10 in a cAMP-response element (CRE)-dependent manner to regulate the transcription of Mitf. This study will provide a rich foundation for further research on skin cancer prevention by enabling us to identify targeted small molecules in the signaling pathways of the UV-induced melanogenic response that are highly likely to induce naturally protective pigmentation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FKBP51 (FKBP5 Official Symbol) is a large molecular weight component of the family of FK506 binding proteins (FKBP). In recent years, research studies from our laboratory highlighted functions for FKBP51 in the control of apoptosis and melanoma progression. FKBP51 expression correlated with the invasiveness and aggressiveness of melanoma. Since a role for TGF-beta in the enhanced tumorigenic potential of melanoma cells is widely described, we hypothesized a cooperative effect between FKBP51 and TGF-beta in melanoma progression. SAN and A375 melanoma cell lines were utilized for this study. Balb/c IL2gamma NOD SCID served to assess the ability to colonize organs and metastasize of different cell lines, which was evaluated by in vivo imaging. Realtime PCR and western blot served for measurement of mRNA and protein expression, respectively. By comparing the metastatic potential of two melanoma cell lines, namely A375 and SAN, we confirmed that an increased capability to colonize murine organs was associated with increased levels of FKBP51. A375 melanoma cell line expressed FKBP51 mRNA levels 30-fold higher in comparison to the SAN mRNA level and appeared more aggressive than SAN melanoma cell line in an experimental metastasis model. In addition, A375 expressed, more abundantly than SAN, the TGF-beta and the pro angiogenic TGF-beta receptor type III (TbetaRIII) factors. FKBP51 silencing produced a reduction of TGF-beta and TbetaRIII gene expression in A375 cell line, in accordance with previous studies. We found that the inducing effect of TGF-beta on Sparc and Vimentin expression was impaired in condition of FKBP51 depletion, suggesting that FKBP51 is an important cofactor in the TGF-beta signal. Such a hypothesis was supported by co immunoprecipitation assays, showing that FKBP51 interacted with either Smad2,3 and p300. In normal melanocytes, FKBP51 potentiated the effect of TGF-beta on N-cadherin expression and conferred a mesenchymal-like morphology to such round-shaped cells. Overall, our findings show that FKBP51 enhances some pro oncogenic functions of TGF-beta, suggesting that FKBP51-overexpression may help melanoma to take advantage of the tumor promoting activities of the cytokine.
    Clinical and translational medicine. 01/2014; 3(1):1.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor microenvironment represents the site where the tumor tries to survive and escape from immune system-mediated recognition. Indeed, to proliferate tumor cells can divert the immune response inducing the generation of myeloid derived suppressor cells and regulatory T cells which can limit the efficiency of effector antitumor lymphocytes in eliminating neoplastic cells. Many components of the tumor microenvironment can serve as a double sword for the tumor and the host. Several types of fibroblast-like cells, which herein we define mesenchymal stromal cells (MSC), secrete extracellular matrix components and surrounding the tumor mass can limit the expansion of the tumor. On the other hand, MSC can interfere with the immune recognition of tumor cells producing immunoregulatory cytokines as transforming growth factor (TGF)β, releasing soluble ligands of the activating receptors expressed on cytolytic effector cells as decoy molecules, affecting the correct interaction among lymphocytes and tumor cells. MSC can also serve as target for the same anti-tumor effector lymphocytes or simply impede the interaction between these lymphocytes and neoplastic cells. Thus, several evidences point out the role of MSC, both in epithelial solid tumors and hematological malignancies, in regulating tumor cell growth and immune response. Herein, we review these evidences and suggest that MSC can be a suitable target for a more efficient anti-tumor therapy.
    Immunology letters 03/2014; · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Smad4, a key intracellular mediator in TGF-β signaling, plays a critical role in the normal development of many tissues/organs. However, its functional role in the development of the lacrimal gland (LG) has never been reported. The aim of this study was to investigate the role Smad4 may play in the development of LG by using Smad4 conditional knockout mice and comparing their LG changes with the LG in normal control mice. Smad4 in the LG, as well as in the lens, cornea, and ectoderm of the eyelids, was conditionally inactivated by using Pax6 promoter-driven Cre-transgenic mice. Lac Z reporter was used to visualize the developing LG by X-gal staining, and standard histologic approaches were used to reveal morphologic alterations. Inactivation of Smad4 resulted in reduction in the size and number of acini in the embryonic LG and in pigment accumulation within the LG, although it did not affect the formation of the primary lacrimal bud. After birth, the LG from Smad4-mutant mice developed slowly, and pigment was observed starting from the P7 mutant LG. Thereafter, the mutant LG was considerably smaller than the normal LG and was eventually replaced by adipose tissue. These results support the notion that Smad4 is essential for the normal development and maintenance of the mouse LG.
    Japanese Journal of Ophthalmology 02/2014; · 1.80 Impact Factor