Combined temperature-programmed reaction and in situ x-ray scattering studies of size-selected silver clusters under realistic reaction conditions in the epoxidation of propene

Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA.
The Journal of Chemical Physics (Impact Factor: 3.12). 09/2009; 131(12):121104-121104-4. DOI: 10.1063/1.3237158

ABSTRACT The catalytic activity and dynamical shape changes in size-selected nanoclusters at work are studied under realistic reaction conditions by using a combination of simultaneous temperature-programmed reaction with in situ grazing-incidence small angle x-ray scattering. This approach allows drawing a direct correlation between nanocatalyst size, composition, shape, and its function under realistic reaction conditions for the first time. The approach is illustrated in a chemical industry highly relevant selective partial oxidation of propene on a monodisperse silver nanocatalyst. The shape of the catalyst undergoes rapid change already at room temperature upon the exposure to the reactants, followed by a complex evolution of shape with increasing temperature. Acrolein formation is observed around 50 °C while the formation of the propylene oxide exhibits a sharp onset at 80 °C and is leveling off at 150 °C. At lower temperatures acrolein is produced preferentially to propylene oxide; at temperatures above 100 °C propylene oxide is favored.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular dynamics simulation has been applied for investigation of coefficient thermal con-ductivity (CTC) of aluminum nanocluster and its bulk limit via Green–Kubo formalism. The dependence of CTC on size range 256 N 1; 372 is investigated. Temperature dependence of CTC quantity is consid-ered for aluminum nanocluster and its bulk limit in range 300 T 1; 100 K. At low temperature, CTC quantity for aluminum nanocluster is greater than its bulk value. Our results regarding the CTC quantity as a function of size and temperature of aluminum nanocluster show that there is a peak in the thermal conductivity. It is worthwhile to notice that trend and the value of our result for CTC quantity in the bulk of aluminum is in agreement with experimental results.
    Journal of Nanoparticle Research 10/2012; · 2.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we investigate uniformly dispersed size-selected Pdn clusters (n = 4, 10, and 17) on alumina supports. We study the changes of clustered Pd atoms under oxidizing and reducing (O2 and CO, respectively) conditions in situ using ambient pressure XPS. The behavior of Pd in the clusters is quite different from that of Pd foil under the same conditions. For all Pd clusters, we observe only one Pd peak. The binding energy of this Pd 3d peak is ∼1-1.4 eV higher than that of metallic Pd species and changes slightly in CO and O2 environments. On the Pd foil however many different Pd species co-exist on the surface and change their oxidation states under different conditions. We find that the Pd atoms in direct contact with Al2O3 differ in oxidation state from the surface Pd atoms in a foil under reaction conditions. Compared to previous literature, we find that Pd 3d peak positions are greatly influenced by the different types of Al2O3 supports due to the combination of both initial and final state effects.
    The Journal of Chemical Physics 06/2013; 138(21):214304. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conversion of CO2 into fuels and chemicals is viewed as an attractive route for controlling the atmospheric concentration and recycling of this greenhouse gas, but its industrial application is limited by the low selectivity and activity of the current catalysts. Theoretical modeling, in particular density functional theory (DFT) simulations, provides a powerful and effective tool to discover chemical reaction mechanisms and design new catalysts for the chemical conversion of CO2 , overcoming the repetitious and time/labor consuming trial-and-error experimental processes. In this article we give a comprehensive survey of recent advances on mechanism determination by DFT calculations for the catalytic hydrogenation of CO2 into CO, CH4 , CH3 OH, and HCOOH, and CO2 methanation, as well as the photo- and electrochemical reduction of CO2 . DFT-guided design procedures of new catalytic systems are also reviewed, and challenges and perspectives in this field are outlined.
    ChemSusChem 05/2013; · 7.48 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014