Metal-mesh achromatic half-wave plate for use at submillimeter wavelengths.

University of Manchester, School of Physics and Astronomy, Manchester, UK.
Applied Optics (Impact Factor: 1.69). 12/2008; 47(33):6251-6. DOI: 10.1364/AO.47.006251
Source: PubMed

ABSTRACT A metal-mesh achromatic half-wave plate (HWP) has been designed, manufactured, and tested for potential use in millimeter and submillimeter astronomical instruments. The prototype device presented here is based on a 12-grid Shatrow [IEEE Trans. Antennas Propag. 43, 109 (1995)] recipe to operate over the frequency range of 120-180 GHz. Transmission line modeling and finite-element analysis [Ansoft HFSS website:] were used to optimize the design geometrical parameters in terms of the device transmission, reflection, absorption, phase-shift, and cross-polarization as a function of frequency. The resulting prototype device was constructed and characterized using incoherent radiation from a polarizing Fourier transform spectrometer to explore its frequency and polarization behavior. These measurements are shown to be in excellent agreement with the models. Lists of the achieved HWP performance characteristics are reported.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Almost 50 years of research on the Cosmic Microwave Background (CMB) have produced a revolution in our understanding of the Universe and of its evolution. These measurements test the deepest issues linking cosmology and fundamental physics, namely inflation, the strange composition of our universe, and the formation of its structures. We review the current status of the measurements and the related experimental methods. We conclude describing a few selected forthcoming CMB experiments, studying the finest details of the CMB (polarization, Gaussianity, spectrum and spectral anisotropy).
    Nuclear Physics B - Proceedings Supplements 10/2013; · 0.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a polarisation rotator based on a dielectrically embedded metal Mesh Half Wave Plate (MHWP) working in the W-band frequency range (75–110 GHz). The device was realised using metallic grids with sub-wavelength anisotropic geometries able to mimic the behaviour of natural birefringent materials. The device was designed using a combination of transmission line codes and finite-element analysis able to achieve phase accuracy down to a fraction of degree. Very accurate intensity and phase measurements were carried out using coherent radiation from a Vector Network Analyser (VNA). The presented device performs better and it is much thinner than previous devices having reduced the number of grids by a factor two and minimised their inductive losses. The new mesh HWP has excellent performances in terms of differential phase-shift flatness and cross-polarisation respectively 180.4 ± 2.9 • and −28 dB across a 25% bandwidth.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The successful European Space Agency (ESA) Planck mission has mapped the Cosmic Microwave Background (CMB) temperature anisotropy with unprecedented accuracy. However, Planck was not designed to detect the polarised components of the CMB with comparable precision. The BICEP2 collaboration has recently reported the first detection of the B-mode polarisation. ESA is funding the development of critical enabling technologies associated with B-mode polarisation detection, one of these being large diameter half-wave plates. We compare different polarisation modulators and discuss their respective trade-offs in terms of manufacturing, RF performance and thermo-mechanical properties. We then select the most appropriate solution for future satellite missions, optimized for the detection of B-modes.