A look inside the diabetic brain: Contributors to diabetes-induced brain aging

Department of Pharmacology, Physiology and Neuroscience University of South Carolina, School of Medicine, Columbia, SC 29208, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 12/2008; 1792(5):444-53. DOI: 10.1016/j.bbadis.2008.10.013
Source: PubMed

ABSTRACT Central nervous system (CNS) complications resulting from diabetes is a problem that is gaining more acceptance and attention. Recent evidence suggests morphological, electrophysiological and cognitive changes, often observed in the hippocampus, in diabetic individuals. Many of the CNS changes observed in diabetic patients and animal models of diabetes are reminiscent of the changes seen in normal aging. The central commonalities between diabetes-induced and age-related CNS changes have led to the theory of advanced brain aging in diabetic patients. This review summarizes the findings of the literature as they relate to the relationship between diabetes and dementia and discusses some of the potential contributors to diabetes-induced CNS impairments.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise is known to have beneficial effects on cognitive function. This effect is greatly favored by an exercise-induced increase in neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1), especially with high-intensity exercises (HIE). As a complication of type 1 diabetes (T1D), a cognitive decline may occur, mostly ascribed to hypoglycaemia and chronic hyperglycaemia. Therefore, the purpose of this study was to examine the effects of acute HIE on cognitive function and neurotrophins in T1D and matched controls. Ten trained T1D (8 males, 2 females) participants and their matched (by age, sex, fitness level) controls were evaluated on 2 occasions after familiarization: a maximal test to exhaustion and an HIE bout (10 intervals of 60 s at 90% of their maximal wattage followed by 60 s at 50 W). Cognitive tests and analyses of serum BDNF, IGF-1, and free insulin were performed before and after HIE and following 30 min of recovery. At baseline, cognitive performance was better in the controls compared with the T1D participants (p < 0.05). After exercise, no significant differences in cognitive performance were detected. BDNF levels were significantly higher and IGF-1 levels were significantly lower in T1D compared with the control group (p < 0.05) at all time points. Exercise increased BDNF and IGF-1 levels in a comparable percentage in both groups (p < 0.05). In conclusion, although resting levels of serum BDNF and IGF-1 were altered by T1D, comparable increasing effects on BDNF and IGF-1 in T1D and healthy participants were found. Therefore, regularly repeating acute HIE could be a promising strategy for brain health in T1D.
    Applied Physiology Nutrition and Metabolism 01/2015; 40(1). DOI:10.1139/apnm-2014-0098 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
    Frontiers in Endocrinology 10/2014; 5:161. DOI:10.3389/fendo.2014.00161
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epidemiological and biological evidences support a link between type 2 diabetes mellitus (DM2) and Alzheimer's disease (AD). Persons with diabetes have a higher incidence of cognitive decline and an increased risk of developing all types of dementia. Cognitive deficits in persons with diabetes mainly affect the areas of psychomotor efficiency, attention, learning and memory, mental flexibility and speed, and executive function. The strong epidemiological association has suggested the existence of a physiopathological link. The determinants of the accelerated cognitive decline in DM2, however, are less clear. Increased cortical and subcortical atrophy have been evidenced after controlling for diabetic vascular disease and inadequate cerebral circulation. Most recent studies have focused on the role of insulin and insulin resistance as possible links between diabetes and AD. Disturbances in brain insulin signaling mechanisms may contribute to the molecular, biochemical, and histopathological lesions in AD. Hyperglycemia itself is a risk factor for cognitive dysfunction and dementia. Hypoglycemia may also have deleterious effects on cognitive function. Recurrent symptomatic and asymptomatic hypoglycemic episodes have been suggested to cause sub-clinical brain damage, and permanent cognitive impairment. Future trials are required to clarify the mechanistic link, to address the question whether cognitive decline may be prevented by an adequate metabolic control, and to elucidate the role of drugs that may cause hypoglycemic episodes.
    12/2014; 5(6):889-93. DOI:10.4239/wjd.v5.i6.889

Full-text (2 Sources)

Available from
May 22, 2014