Article

Measurement of muscle disease by quantitative second-harmonic generation imaging.

University of Connecticut Health Center, Department of Genetics and Developmental Biology, Farmington, Connecticut 06030, USA.
Journal of Biomedical Optics (Impact Factor: 2.75). 01/2008; 13(4):044018. DOI: 10.1117/1.2967536
Source: PubMed

ABSTRACT Determining the health of muscle cells by in vivo imaging could impact the diagnosis and monitoring of a large number of congenital and acquired muscular or cardiac disorders. However, currently used technologies are hampered by insufficient resolution, lack of specificity, or invasiveness. We have combined intrinsic optical second-harmonic generation from sarcomeric myosin with a novel mathematical treatment of striation pattern analysis, to obtain measures of muscle contractile integrity that correlate strongly with the neuromuscular health of mice suffering from genetic, acquired, and age-related decline in skeletal muscle function. Analysis of biopsies from a pilot group of human volunteers suggests a similar power in quantifying sarcopenic changes in muscle integrity. These results provide the first strong evidence that quantitative image analysis of sarcomere pattern can be correlated with physiological function, and they invite the application of SHG imaging in clinical practice, either in biopsy samples or via microendoscopy.

1 Follower
 · 
62 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that the canonical single frequency sarcomeric SHG intensity pattern (SHG-IP) of control muscles is converted to double frequency sarcomeric SHG-IP in preserved mdx mouse gastrocnemius muscles in the vicinity of necrotic fibers. These double frequency sarcomeric SHG-IPs are often spatially correlated to double frequency sarcomeric two-photon excitation fluorescence (TPEF) emitted from Z-line and I-bands and to one centered spot SHG angular intensity pattern (SHG-AIP) suggesting that these patterns are signature of myofibrillar misalignement. This latter is confirmed with transmission electron microscopy (TEM). Moreover, a good spatial correlation between SHG signature of myofibrillar misalignment and triad reduction is established. Theoretical simulation of sarcomeric SHG-IP is used to demonstrate the correlation between change of SHG-IP and -AIP and myofibrillar misalignment. The extreme sensitivity of SHG microscopy to reveal the submicrometric organization of A-band thick filaments is highlighted. This report is a first step toward future studies aimed at establishing live SHG signature of myofibrillar misalignment involving excitation contraction defects due to muscle damage and disease.
    Biomedical Optics Express 03/2014; 5(3):858-75. DOI:10.1364/BOE.5.000858 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Automatic quantification of cardiac muscle properties in tissue sections might provide important information related to different types of diseases. Second harmonic generation (SHG) imaging provides a stain-free microscopy approach to image cardiac fibers that, combined with our methodology of the automated measurement of the ultrastructure of muscle fibers, computes a reliable set of quantitative image features (sarcomere length, A-band length, thick-thin interaction length, and fiber orientation). We evaluated the performance of our methodology in computer-generated muscle fibers modeling some artifacts that are present during the image acquisition. Then, we also evaluated it by comparing it to manual measurements in SHG images from cardiac tissue of fetal and adult rabbits. The results showed a good performance of our methodology at high signal-to-noise ratio of 20 dB. We conclude that our automated measurements enable reliable characterization of cardiac fiber tissues to systematically study cardiac tissue in a wide range of conditions.
    Journal of Biomedical Optics 05/2014; 19(5):56010. DOI:10.1117/1.JBO.19.5.056010 · 2.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We describe a novel two-photon fluorescence microscopy system capable of producing high-quality second harmonic generation (SHG) images in thick turbid media by using an innovative detection system. This novel detection system is capable of detecting photons from a very large surface area. This system has proven effective in providing images of thick turbid samples, both biological and artificial. Due to its transmission detection geometry, the system is particularly suitable for detecting SHG signals, which are generally forward directed. In this article, we present comparative data acquired simultaneously on the same sample with the forward and epidetection schemes. Microsc. Res. Tech., 2014. © 2014 Wiley Periodicals, Inc.
    Microscopy Research and Technique 05/2014; 77(5). DOI:10.1002/jemt.22354 · 1.17 Impact Factor

Full-text

Download
23 Downloads
Available from
Nov 12, 2014