Article

Analysis on switching mechanism of graphene oxide resistive memory device

Journal of Applied Physics (Impact Factor: 2.21). 08/2011; 110(4):044506-044506-5. DOI: 10.1063/1.3624947

ABSTRACT Recently, a flexible resistive switching memory device using graphene oxide was successfully demonstrated. In this work, the new findings on the switching mechanism of the graphene oxide memory are presented through a comprehensive study on the switching phenomena. It has been found that the switching operation of graphene oxide resistive switching memory (RRAM) is governed by dual mechanism of oxygen migration and Al diffusion. However, the Al diffusion into the graphene oxide is the main factor to determine the switching endurance property which limits the long term lifetime of the device. The electrode dependence on graphene oxide RRAM operation has been analyzed as well and is attributed to the difference in surface roughness of graphene oxide for the different bottom electrodes.

0 Bookmarks
 · 
132 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The electrical properties of polymer composites based on polycarbonate (PC) and panipol CXM (CX), filled with reduced graphene oxide (rGO), were investigated. The composite preparation conditions allowed good dispersion of rGO in the polymer matrix. We show here that when used as a nanofiller in polymers, rGO offers an appreciable improvement of the electrical current in 3 orders of magnitude (from 10−10 A to 10−7 A at 10 V), as observed in current-voltage (I-V) data for both PC and CX polymers with rGO. The suggested mechanism for the observed switching effects is the migration of oxygen groups aided by both the electrical field and Joule heating. Moreover, some reset- and set- like changes similar to resistive switching were observed in the I-V data of PC and CX-based films upon the addition of rGO. Clockwise (resembling a memristive system type II) and counter-clockwise (resembling a memristive system type I) directions were detected in the I-V data of the analyzed films. According to the obtained results, rGO can be a good filler for PC and CX polymer-based films for application in electronic and photonic areas, due to the significant improvement of the electrical conductivity of these polymers.
    Journal of Applied Physics 02/2013; 113(6). · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The resistive switching (RS) mechanism in Ni-doped graphene oxide (GO) devices is studied. We found that RS depends strongly on the fabrication method of the GO sheet and on the electrode material. Resistive switching in GO-devices can be caused by the diffusion of ions from metallic electrode or by the migration of oxygen groups, depending on the fabrication process. We also show that GO-based structures possess activity-dependent modification capabilities, emphasized by the increase/decrease of device conductance after consecutive voltage sweeps of opposite polarity. Our results allow a better understanding of bipolar RS, towards future non-volatile memories and neuromorphic systems. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742912]
    Applied Physics Letters 01/2012; 101(6). · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is broad interest in surface functionalization of 2D materials and its related applications. In this work, we present a novel graphene layer transistor fabricated by introducing fluorinated graphene (fluorographene), one of the thinnest 2D insulator, as the gate dielectric material. For the first time, the dielectric properties of fluorographene, including its dielectric constant, frequency dispersion, breakdown electric field and thermal stability, were comprehensively investigated. We found that fluorographene with extremely thin thickness (5 nm) can sustain high resistance at temperature up to 400°C. The measured breakdown electric field is higher than 10 MV cm(-1), which is the heightest value for dielectric materials in this thickness. Moreover, a proof-of-concept methodology, one-step fluorination of 10-layered graphene, is readily to obtain the fluorographene/graphene heterostructures, where the top-gated transistor based on this structure exhibits an average carrier mobility above 760 cm(2)/Vs, higher than that obtained when SiO2 and GO were used as gate dielectric materials. The demonstrated fluorographene shows excellent dielectric properties with fast and scalable processing, providing a universal applications for the integration of versatile nano-electronic devices.
    Scientific reports. 01/2014; 4:5893.

Full-text

Download
8 Downloads
Available from