Kalirin-7 is required for synaptic structure and function.

Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
Journal of Neuroscience (Impact Factor: 6.91). 12/2008; 28(47):12368-82. DOI: 10.1523/JNEUROSCI.4269-08.2008
Source: PubMed

ABSTRACT Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density, whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7(KO)) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7(KO) mice. Behaviorally, Kal7(KO) mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition, and radial arm maze tasks. Kal7(KO) mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7(KO) mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7(KO) mice, with decreased excitatory synapses apparent only after 21 d in vitro. Expression of exogenous Kal7 in Kal7(KO) neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam+/− mice) were initially generated to study neuropeptide amidation. Pam+/− mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam+/− phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam+/– mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam+/– mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function.
    Annals of the New York Academy of Sciences 03/2014; · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Like several Rho GDP/GTP exchange factors (GEFs), Kalirin7 (Kal7) contains an N-terminal Sec14 domain and multiple spectrin repeats. A natural splice variant of Kalrn lacking the Sec14 domain and four spectrin repeats is unable to increase spine formation; our goal was to understand the function of the Sec14 and spectrin repeat domains. Kal7 lacking its Sec14 domain still increased spine formation, but the spines were short. Strikingly, Kal7 truncation mutants containing only the Sec14 domain and several spectrin repeats increased spine formation. The Sec14 domain bound phosphoinositides, a minor but crucial component of cellular membranes, and binding was increased by a phosphomimetic mutation. Expression of KalSec14-GFP in non-neuronal cells impaired receptor-mediated endocytosis, linking Kal7 to membrane trafficking. Consistent with genetic studies placing Abl, a non-receptor tyrosine kinase, and the Drosophila ortholog of Kalrn into the same signaling pathway, Abl1 phosphorylated two sites in the fourth spectrin repeat of Kalirin, increasing its sensitivity to calpain-mediated degradation. Treatment of wildtype mouse, but not Kal7(KO) mouse, cortical neurons with an Abl inhibitor caused an increase in linear spine density. Phosphorylation of multiple sites in the N-terminal Sec14/spectrin region of Kal7 may allow coordination of the many signaling pathways contributing to spine morphogenesis.
    Molecular biology of the cell 03/2014; · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is one of the most debilitating psychiatric diseases with a lifetime prevalence of approximately 1%. Although the specific molecular underpinnings of schizophrenia are still unknown, evidence has long linked its pathophysiology to postsynaptic abnormalities. The postsynaptic density (PSD) is among the molecular structures suggested to be potentially involved in schizophrenia. More specifically, the PSD is an electron-dense thickening of glutamatergic synapses, including ionotropic and metabotropic glutamate receptors, cytoskeletal and scaffolding proteins, and adhesion and signaling molecules. Being implicated in the postsynaptic signaling of multiple neurotransmitter systems, mostly dopamine and glutamate, the PSD constitutes an ideal candidate for studying dopamine-glutamate disturbances in schizophrenia. Recent evidence suggests that some PSD proteins, such as PSD-95, Shank, and Homer are implicated in severe behavioral disorders, including schizophrenia. These findings, further corroborated by genetic and animal studies of schizophrenia, offer new insights for the development of pharmacological strategies able to overcome the limitations in terms of efficacy and side effects of current schizophrenia treatment. Indeed, PSD proteins are now being considered as potential molecular targets against this devastating illness. The current paper reviews the most recent hypotheses on the molecular mechanisms underlying schizophrenia pathophysiology. First, we review glutamatergic dysfunctions in schizophrenia and we provide an update on postsynaptic molecules involvement in schizophrenia pathophysiology by addressing both human and animal studies. Finally, the possibility that PSD proteins may represent potential targets for new molecular interventions in psychosis will be discussed.
    Current Neuropharmacology 05/2014; 12(3):219-38. · 2.03 Impact Factor


1 Download
Available from