Blocking A beta(42) Accumulation Delays the Onset and Progression of Tau Pathology via the C Terminus of Heat Shock Protein70-Interacting Protein: A Mechanistic Link between A beta and Tau Pathology

Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 12/2008; 28(47):12163-75. DOI: 10.1523/JNEUROSCI.2464-08.2008
Source: PubMed

ABSTRACT The molecular alterations that induce tau pathology in Alzheimer disease (AD) are not known, particularly whether this is an amyloid-beta (Abeta)-dependent or -independent event. We addressed this issue in the 3xTg-AD mice using both genetic and immunological approaches and show that a selective decrease in Abeta(42) markedly delays the progression of tau pathology. The mechanism underlying this effect involves alterations in the levels of C terminus of heat shock protein70-interacting protein (CHIP) as we show that Abeta accumulation decreases CHIP expression and increases tau levels. We show that the Abeta-induced effects on tau were rescued by restoring CHIP levels. Our findings have profound clinical implications as they indicate that preventing Abeta accumulation will significantly alter AD progression. These data highlight the critical role CHIP plays as a link between Abeta and tau and identify CHIP as a new potential target not only for AD but for other neurodegenerative disorders characterized by tau accumulation.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is accompanied by an activation of the innate immune system, and many epidemiological studies have shown reduced risk for dementia or AD associated with chronic consumption of non-steroidal anti-inflammatory drugs (NSAIDs). These observations led to animal model studies to test the hypothesis that NSAIDs can be disease-modifying for some aspects of AD pathogenesis. NSAIDs cannot only suppress inflammatory targets, which could contribute to neuroprotection, they also slow amyloid deposition by mechanisms that remain unclear. Several large clinical trials with NSAID therapies with AD subjects have failed, and cyclooxygenase-2 does not appear to be a useful target for disease modifying therapy. However, there may be apolipoprotein E E4 pharmacogenomic effects and a real but delayed positive signal in a large primary prevention trial with naproxen. This encourages researchers to re-address possible mechanisms for a stage-dependent NSAID efficacy, the subject of this review.
    CNS & neurological disorders drug targets 03/2010; 9(2):140-8. DOI:10.2174/187152710791011991 · 2.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Particularly interesting new cysteine- histidine- rich protein (PINCH) is an adaptor protein that our data have shown is required for neurite extension under stressful conditions. Our previous studies also report that PINCH is recalled by neurons showing decreased levels of synaptodendritic signaling proteins such as MAP2 or synaptophysin in the brains of human immunodeficiency virus (HIV) patients. The current study addressed potential role(s) for PINCH in neurodegenerative diseases. Mass spectrometry predicted the interaction of PINCH with Tau and with members of the heat shock response. Our in vitro data confirmed that PINCH binds to hyperphosphorylated (hp) Tau and to E3 ubiquitin ligase, carboxy-terminus of heat shock-70 interacting protein. Silencing PINCH prior to induction of hp-Tau resulted in more efficient clearance of accumulating hp-Tau, suggesting that PINCH may play a role in stabilizing hp-Tau. Accumulation of hp-Tau is implicated in more than 20 neuropathological diseases including Alzheimer's disease (AD), frontotemporal dementia (FTD), and human immunodeficiency virus encephalitis (HIVE). Analyses of brain tissues from HIVE, AD and FTD patients showed that PINCH is increased and binds to hp-Tau. These studies address a new mechanism by which AD and HIV may intersect and identify PINCH as a contributing factor to the accumulation of hyperphosphorylated Tau.
    PLoS ONE 03/2013; 8(3):e58232. DOI:10.1371/journal.pone.0058232 · 3.53 Impact Factor