Article

Cloning and expression of a new recombinant thrombolytic and anthithrombotic agent - a staphylokinase variant.

Department of Medical Biochemistry, Medical University of Lodz, Łódź, Poland.
Acta biochimica Polonica (Impact Factor: 1.19). 12/2008; 56(1):41-53.
Source: PubMed

ABSTRACT To develop a more potent antithrombin agent with thrombolytic and antiplatelet properties, a new staphylokinase (SAK) variant was constructed. The kringle 2 domain (K2) of tissue type-plasminogen activator (t-PA) containing a fibrin-specific binding site (i), the RGD sequence (Arg-Gly-Asp) for the prevention of platelet aggregation (ii) and the antithrombotic agent - hirulog (iii) was assembled to the C-terminal part of recombinant staphylokinase (r-SAK). cDNA for the hybrid protein SAK-RGD-K2-Hirul was cloned into Pichia pastoris pPIC9K yeast expression vector. The introduction of K2 t-PA, the RGD sequence and hirulog into the C-terminus of r-SAK did not alter the staphylokinase activity. We observed a higher clot lysis potency of SAK-RGD-K2-Hirul as evidenced by a faster and more profound lysis of (125)I-labeled human fibrin clots. The potency of thrombin inhibition by the hirulog C-terminal part of the recombinant fusion protein was almost identical to that of r-Hir alone. These results suggest that the SAK-RGD-K2-Hirul construct can be a more potent and faster-acting thrombolytic agent with better antithrombin and antiplatelet properties compared to r-SAK and SAK-RGD-K2-Hir.

0 0
 · 
1 Bookmark
 · 
198 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: Thrombus formed in blood vessels lead to atherothrombotic diseases such as myocardial or cerebral infarction. Thrombolytic agents are used to dissolve the already formed clots in the blood vessels; however, these drugs sometimes cause serious and fatal consequences. Herbal preparations have been used since ancient times for the treatment of several diseases although they show little toxicity in some cases. Aqueous extracts of herbs used in thrombolysis have been reported before with cytotoxic data, however, the organic extracts of herbs have not been documented. This study aims to investigate whether organic extracts possess thrombolytic properties with minimal or no toxicity. METHODS: An in vitro thrombolytic model was used to check the clot lysis effect of six Bangladeshi herbal extracts viz., Ageratum conyzoides L., Clausena suffruticosa, Leea indica (Burm.f.) Merr., Leucas aspera Willd., Senna sophera L. Roxb., and Solanum torvum Swartz. using streptokinase as a positive control and water as a negative control. Briefly, venous blood drawn from twenty healthy volunteers was allowed to form clots which were weighed and treated with the test plant materials to disrupt the clots. Weight of clot after and before treatment provided a percentage of clot lysis. Cytotoxicity was screened by brine shrimp lethality bioassay using vincristine sulfate as positive control. RESULTS: Using an in vitro thrombolytic model, Ageratum conyzoides, Clausena suffruticosa, Leea indica, Leucas aspera, Senna sophera and Solanum torvum showed 18.12 +/- 2.34%, 48.9 +/- 2.44%, 39.30 +/- 0.96%, 37.32 +/- 2.00%, 31.61 +/- 2.97% and 31.51 +/- 0.57% and clot lysis respectively. Among the herbs studied Clausena suffruticosa, Leea indica and Leucas aspera showed very significant (p<0.0001) percentage (%) of clot lysis compared to reference drug streptokinase (75.00 +/- 3.04%). In brine shrimp cytotoxic assay, the extracts Ageratum conyzoides, Clausena suffruticosa, Leea indica, Leucas aspera, Senna sophera and Solanum torvum showed LC50 values 508.86 +/- 6.62,41.16 +/- 1.26, 2.65 +/- 0.16, 181.67 +/- 1.65, 233.37 +/- 7.74 and 478.40 +/- 3.23 mug/ml, respectively, with reference to vincristine sulfate (LC50 0.76 +/- 0.04). CONCLUSION: Through our study it was found that Clausena suffruticosa, Leea indica and Leucas aspera possessed effective thrombolytic properties whereas Senna sophera and Solanum torvum showed moderate to mild thrombolytic effects while Ageratum conyzoides showed no significant effect. No extract was found cytoxic compared to positive control. Clausena suffruticosa, Leea indica and Leucas aspera could be incorporated as a thrombolytic agent with in vivo effects to improve the atherothrombotic patients. However, Clausena suffruticosa could be the best one to use in this purpose.
    BMC Complementary and Alternative Medicine 01/2013; 13(1):25. · 2.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul are recombinant proteins that are derivatives of r-SAK (recombinant staphylokinase). They are characterized by their fibrin-specific plasminogen activation properties and their antithrombin and antiplatelet activities. The difference between these proteins is the presence of the antithrombotic fragment (hirudin or hirulog) in the C-terminal portion of the r-SAK. The aim of the present study was to examine the thrombolytic potentials of SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul in an electrically induced carotid artery thrombosis model in rats and to compare the potentials to that of r-SAK. We determined that a bolus injection of SAK-RGD-K2-Hirul was more effective than one of r-SAK in the improvement and maintenance of carotid patency and in arterial thrombus weight reduction; however, it had the same potency as SAK-RGD-K2-Hir. The bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in the animals that were treated with either dose (1.5 or 3.0 mg/kg) of SAK-RGD-K2-Hir or SAK-RGD-K2-Hirul, whereas no changes were observed in the plasma fibrinogen concentration or the α2 plasmin inhibitor level. r-SAK alone did not change the bleeding time or coagulation parameters. In conclusion, our findings demonstrate the thrombolytic activity of intravenous bolus injection of the novel thrombolytic agent SAK-RGD-K2-Hirul in rats. Although this protein compares favorably with r-SAK, we were unable to show the presence of any beneficial effects of SAK-RGD-K2-Hirul over those of SAK-RGD-K2-Hir. Furthermore, our results suggest that high doses of SAK-RGD-K2-Hirul bear the risk of bleeding.
    Pharmacological reports: PR 09/2011; 63(5):1169-79. · 1.97 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The thrombolytic therapy with clinically approved drugs often ensues with recurrent thrombosis caused by thrombin-induced platelet aggregation from the clot debris. In order to minimize these problems, a staphylokinase (SAK)-based bacterial friendly multifunctional recombinant protein SRH (staphylokinase (SAK) linked with tripeptide RGD and dodecapeptide Hirulog (SRH)) was constructed to have Hirulog as an antithrombin agent and RGD (Arg-Gly-Asp) as an antiplatelet agent in the present study. This multifunctional fusion protein SRH was expressed in osmotically inducible E. coli GJ1158 as soluble form and purified with a yield of 0.27 g/L and functionally characterized in vitro. SRH retained the fibrinolytic activity and plasminogen activation rate comparable to the parental counterpart SAK. The antithrombin activity of SRH was significantly higher than SAK. The platelet rich clot lysis assay indicated that SRH had enhanced platelet binding activity and T 50% and C50 of SRH were significantly lower than that of SAK. Furthermore, SRH inhibited the ADP-induced platelet aggregation in dose-dependent manner while SAK had no significant effect on platelet aggregation. Thus, the current study suggests that the SAK variant produced from osmotically inducible GJ1158 is more potent thrombolytic agent with antithrombin and antiplatelet aggregation activities for reduction of reocclusion in thrombolytic therapy.
    BioMed Research International 01/2013; 2013:297305. · 2.88 Impact Factor

Full-text (2 Sources)

View
518 Downloads
Available from
Feb 1, 2013