Isolation of Bartonella species from rodents in Taiwan including a strain closely related to 'Bartonella rochalimae' from Rattus norvegicus.

Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
Journal of Medical Microbiology (Impact Factor: 2.3). 01/2009; 57(Pt 12):1496-501. DOI:10.1099/jmm.0.2008/004671-0
Source: PubMed

ABSTRACT An increasing number of Bartonella species originally isolated from small mammals have been identified as emerging human pathogens. During an investigation of Bartonella infection in rodent populations carried out in Taiwan in 2006, a total of 58 rodents were tested. It was determined that 10.3 % (6/58) of the animals were Bartonella bacteraemic. After PCR/RFLP analysis, four isolates were identified as Bartonella elizabethae and one isolate as Bartonella tribocorum. However, there was one specific isolate with an unrecognized PCR/RFLP pattern. After further sequence and phylogenetic analyses of the gltA, ftsZ and rpoB genes, and the 16S-23S rRNA intergenic spacer region, the results indicated that this specific isolate from Rattus norvegicus was closely related to human pathogenic 'Bartonella rochalimae'. Further studies need to be conducted to evaluate whether this rodent species could be a reservoir for 'B. rochalimae'.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bartonella species are emerging infectious organisms transmitted by arthropods capable of causing long-lasting infection in mammalian hosts. Among over 30 species described from four continents to date, 15 are known to infect humans, with eight of these capable of infecting dogs as well. B. bacilliformis is the only species described infecting humans in Peru; however, several other Bartonella species were detected in small mammals, bats, ticks, and fleas in that country. The objective of this study was to determine the serological and/or molecular prevalence of Bartonella species in asymptomatic dogs in Peru in order to indirectly evaluate the potential for human exposure to zoonotic Bartonella species. A convenient sample of 219 healthy dogs was obtained from five cities and three villages in Peru. EDTA-blood samples were collected from 205 dogs, whereas serum samples were available from 108 dogs. The EDTA-blood samples were screened by PCR followed by nucleotide sequencing for species identification. Antibodies against B. vinsonii berkhoffii and B. rochalimae were detected by IFA (cut-off of 1∶64). Bartonella DNA was detected in 21 of the 205 dogs (10%). Fifteen dogs were infected with B. rochalimae, while six dogs were infected with B. v. berkhoffii genotype III. Seropositivity for B. rochalimae was detected in 67 dogs (62%), and for B. v. berkhoffii in 43 (40%) of the 108 dogs. Reciprocal titers ≥1∶256 for B. rochalimae were detected in 19% of dogs, and for B. v. berkhoffii in 6.5% of dogs. This study identifies for the first time a population of dogs exposed to or infected with zoonotic Bartonella species, suggesting that domestic dogs may be the natural reservoir of these zoonotic organisms. Since dogs are epidemiological sentinels, Peruvian humans may be exposed to infections with B. rochalimae or B. v. berkhoffii.
    PLoS Neglected Tropical Diseases 01/2013; 7(9):e2393. · 4.57 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bartonella spp. were detected in rats (Rattus norvegicus) trapped in downtown Los Angeles, California, USA. Of 200 rats tested, putative human pathogens, B. rochalimae and B. tribocorum were found in 37 (18.5%) and 115 (57.5%) rats, respectively. These bacteria among rodents in a densely populated urban area are a public health concern.
    Emerging Infectious Diseases 04/2012; 18(4):631-3. · 6.79 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Among the 33 confirmed Bartonella species to date, more than half are hosted by rodent species, and at least five of them have been involved in human illness causing diverse symptoms including fever, myocarditis, endocarditis, lymphadenitis and hepatitis. In almost all countries, wild rodents are infected by extremely diverse Bartonella strains with a high prevalence. In the present paper, in light of new knowledge on rodent-adapted Bartonella species genomics, we bring together knowledge gained in recent years to have an overview of the impact of rodent-adapted Bartonella infection on humans and to determine how diversity of Bartonella helps to understand their mechanisms of adaptation to rodents and the consequences on human health.
    Future Microbiology 09/2013; 8:1117-28. · 4.02 Impact Factor

Full-text (2 Sources)

Available from
Nov 21, 2013