Year in Review 2012: Acute Lung Injury, Interstitial Lung Diseases, Sleep and Physiology.

Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences,, University of British Columbia, Kelowna, British Columbia, Canada, V1V 2L2.
Respirology (Impact Factor: 3.5). 01/2013; DOI: 10.1111/resp.12053
Source: PubMed

ABSTRACT The incremental changes made in the definition of ALI/ARDS over the last two decades represent a series of landmark events in the history of the condition. The first description of ARDS (Adult Respiratory Distress Syndrome) established the recognition of this syndrome(1) ; the 1994 AECC (America-European Consensus Conference) definition set the standard for ALI/ARDS clinical trials(2) ; while the new Berlin definition, which has revised the AECC version, is based on 18 years clinical investigation and mechanism exploration, and as a result is a more precise and practical(3) guide for clinical evaluation. The essential components of the new Berlin definition of ARDS are: removal of ALI and division of ARDS into three successive stages (mild, moderate and severe) based on timing, chest imaging, PaO(2) /FiO(2) ratio and level of PEEP applied, with, as previously, exclusion of heart failure or fluid overload. The new definition is based on two large scale databases from 7 medical centers and unifies the understanding of ARDS and establishes a new standard for future clinical trials.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. ALI is characterized by increased permeability of the alveolar-capillary membrane, edema, uncontrolled neutrophils migration to the lung, and diffuse alveolar damage, leading to acute hypoxemic respiratory failure. Although corticosteroids remain the mainstay of ALI treatment, they cause significant side effects. Agents of natural origin, such as medicinal plants and their secondary metabolites, mainly those with very few side effects, could be excellent alternatives for ALI treatment. Several studies, including our own, have demonstrated that plant extracts and/or secondary metabolites isolated from them reduce most ALI phenotypes in experimental animal models, including neutrophil recruitment to the lung, the production of pro-inflammatory cytokines and chemokines, edema, and vascular permeability. In this review, we summarized these studies and described the anti-inflammatory activity of various plant extracts, such as Ginkgo biloba and Punica granatum, and such secondary metabolites as epigallocatechin-3-gallate and ellagic acid. In addition, we highlight the medical potential of these extracts and plant-derived compounds for treating of ALI.
    01/2013; 2013:576479. DOI:10.1155/2013/576479