Article

Coenzyme Q(10) An Independent Predictor of Mortality in Chronic Heart Failure

Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch, New Zealand.
Journal of the American College of Cardiology (Impact Factor: 15.34). 11/2008; 52(18):1435-41. DOI: 10.1016/j.jacc.2008.07.044
Source: PubMed

ABSTRACT The aim of this study was to investigate the relationship between plasma coenzyme Q(10) (CoQ(10)) and survival in patients with chronic heart failure (CHF).
Patients with CHF have low plasma concentrations of CoQ(10), an essential cofactor for mitochondrial electron transport and myocardial energy supply. Additionally, low plasma total cholesterol (TC) concentrations have been associated with higher mortality in heart failure. Plasma CoQ(10) is closely associated with low-density lipoprotein cholesterol (LDL-C), which might contribute to this association. Therefore we tested the hypothesis that plasma CoQ(10) is a predictor of total mortality in CHF and could explain this association.
Plasma samples from 236 patients admitted to the hospital with CHF, with a median (range) duration of follow-up of 2.69 (0.12 to 5.75) years, were assayed for LDL-C, TC, and total CoQ(10).
Median age at admission was 77 years. Median (range) CoQ(10) concentration was 0.68 (0.18 to 1.75) micromol/l. The optimal CoQ(10) concentration for prediction of mortality (established with receiver-operator characteristic [ROC] curves) was 0.73 micromol/l. Multivariable analysis allowing for effects of standard predictors of survival--including age at admission, gender, previous myocardial infarction, N-terminal peptide of B-type natriuretic peptide, and estimated glomerular filtration rate (modification of diet in renal disease)--indicated CoQ(10) was an independent predictor of survival, whether dichotomized at the ROC curve cut-point (hazard ratio [HR]: 2.0; 95% confidence interval [CI]: 1.2 to 3.3) or the median (HR: 1.6; 95% CI: 1.0 to 2.6).
Plasma CoQ(10) concentration was an independent predictor of mortality in this cohort. The CoQ(10) deficiency might be detrimental to the long-term prognosis of CHF, and there is a rationale for controlled intervention studies with CoQ(10).

Download full-text

Full-text

Available from: Peter Myles George, May 24, 2014
1 Follower
 · 
188 Views
  • Source
    Dataset: COQ10
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥ 0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10.
    The Scientific World Journal 01/2012; 2012:792756. DOI:10.1100/2012/792756 · 1.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fundamental role of coenzyme Q(10) (CoQ(10)) in mitochondrial bioenergetics and its well-acknowledged antioxidant properties constitute the basis for its clinical applications, although some of its effects may be related to a gene induction mechanism. Cardiovascular disease is still the main field of study and the latest findings confirm a role of CoQ(10) in improving endothelial function. The possible relation between CoQ(10) deficiency and statin side effects is highly debated, particularly the key issue of whether CoQ(10) supplementation counteracts statin myalgias. Furthermore, in cardiac patients, plasma CoQ(10) was found to be an independent predictor of mortality. Studies on CoQ(10) and physical exercise have confirmed its effect in improving subjective fatigue sensation and physical performance and in opposing exercise-related damage. In the field of mitochondrial myopathies, primary CoQ(10) deficiencies have been identified, involving different genes of the CoQ(10) biosynthetic pathway; some of these conditions were found to be highly responsive to CoQ(10) administration. The initial observations of CoQ(10) effects in Parkinson's and Huntington's diseases have been extended to Friedreich's ataxia, where CoQ(10) and other quinones have been tested. CoQ(10) is presently being used in a large phase III trial in Parkinson's disease. CoQ(10) has been found to improve sperm count and motility on asthenozoospermia. Moreover, for the first time CoQ(10) was found to decrease the incidence of preeclampsia in pregnancy. The ability of CoQ(10) to mitigate headache symptoms in adults was also verified in pediatric and adolescent populations.
    Nutrition 11/2009; 26(3):250-4. DOI:10.1016/j.nut.2009.08.008 · 3.05 Impact Factor