Targeting Type III Secretion in Yersinia pestis

Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, 01655, USA.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 12/2008; 53(2):385-92. DOI: 10.1128/AAC.00670-08
Source: PubMed

ABSTRACT Yersinia pestis, the causative agent of plague, utilizes a plasmid-encoded type III secretion system (T3SS) to aid it with its resistance to host defenses. This system injects a set of effector proteins known as Yops (Yersinia outer proteins) into the cytosol of host cells that come into contact with the bacteria. T3SS is absolutely required for the virulence of Y. pestis, making it a potential target for new therapeutics. Using a novel and simple high-throughput screening method, we examined a diverse collection of chemical libraries for small molecules that inhibit type III secretion in Y. pestis. The primary screening of 70,966 compounds and mixtures yielded 421 presumptive inhibitors. We selected eight of these for further analysis in secondary assays. Four of the eight compounds effectively inhibited Yop secretion at micromolar concentrations. Interestingly, we observed differential inhibition among Yop species with some compounds. The compounds did not inhibit bacterial growth at the concentrations used in the inhibition assays. Three compounds protected HeLa cells from type III secretion-dependent cytotoxicity. Of the eight compounds examined in secondary assays, four show good promise as leads for structure-activity relationship studies. They are a diverse group, with each having a chemical scaffold not only distinct from each other but also distinct from previously described candidate type III secretion inhibitors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Yersinia pestis causes an acute infection known as the plague. Conventional techniques to enumerate Y. pestis can be labor intensive and do not lend themselves to high throughput assays. In contrast, bioluminescent bioreporters produce light that can be detected using plate readers or optical imaging platforms to monitor bacterial populations as a function of luminescence. Here, we describe the development of two Y. pestis chromosomal-based luxCDABE bioreporters, Lux(PtolC) and Lux(PcysZK). These bioreporters use constitutive promoters to drive expression of luxCDABE that allow for sensitive detection of bacteria via bioluminescence in vitro. Importantly, both bioreporters demonstrate a direct correlation between bacterial numbers and bioluminescence, which allows for bioluminescence to be used to compare bacterial numbers. We demonstrate the use of these bioreporters to test antimicrobial inhibitors (Lux(PtolC)) and monitor intracellular survival (Lux(PtolC) and Lux(PcysZK)) in vitro. Furthermore, we show that Y. pestis infection of the mouse model can be monitored using whole animal optical imaging in real time. Using optical imaging, we observed Y. pestis dissemination and differentiated between virulence phenotypes in live animals via bioluminescence. Finally, we demonstrate that whole animal optical imaging can identify unexpected colonization patterns in mutant-infected animals.
    PLoS ONE 10/2012; 7(10):e47123. DOI:10.1371/journal.pone.0047123 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs) utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (-)-hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (-)-hopeaphenol in three different gram-negative bacteria. (-)-Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (-)-hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.
    PLoS ONE 12/2013; 8(12):e81969. DOI:10.1371/journal.pone.0081969 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The rise of multidrug resistant bacteria is a major worldwide health concern. There is currently an unmet need for the development of new and selective antibacterial drugs. Therapies that target and disarm the crucial virulence factors of pathogenic bacteria, while not actually killing the cells themselves, could prove to be vital for the treatment of numerous diseases. This article discusses the main surface architectures of pathogenic Gram-negative bacteria and the small molecules that have been discovered, which target their specific biogenesis pathways and/or actively block their virulence. The future perspective for the use of antivirulence compounds is also assessed.
    Future Microbiology 07/2014; 9(7):887-900. DOI:10.2217/fmb.14.46 · 3.82 Impact Factor


Available from